First integral and integral invariants of relativistic birkhoff systems 系統(tǒng)的第一積分和積分不變量
Establishment of the first integration and integral invariants of the relativistic birkhoff system 系統(tǒng)的第一積分與積分不變量的構(gòu)造
In order to prove the existence of the periodic boucing solutions , firstly we will introduce a new coordinate transformation , transform the system from right half plane to the whole plane . and give the relation of the eigenvalues of hill ' s equation and the rotation numbers , using this approach and pioncar - birkhoff twist theorem , we proved the existence of the periodic bouncing solutions for asymptotical linear oscillator 對于周期解的存在性證明,我們引進新的坐標變換把右半平面上的碰撞問題轉(zhuǎn)化到整個平面上,給出旋轉(zhuǎn)數(shù)與hill方程的特征值的關(guān)系,并以此來度量漸近線性振子,再應(yīng)用pioncar - birkhoff扭轉(zhuǎn)定理得到周期碰撞解的存在性。
First , we describe the birkhoff center , the minimal attractive center and the minimal attractor . second , we give relationships among the attractor of axiom a , the non - wandering set , the limit set , the birkhoff center , the probability limit set , the minimal attractive center , the minimal attractor , the ruelle attractor and the measure center 首先給出birkhoff中心、極小吸引中心、極小吸引子的刻劃,然后給出對于公理a吸引子,非游蕩集、極限集、 birkhoff中心、概率極限集、極小吸引中心、極小吸引子、 ruelle吸引子以及測度中心之間的一個層次關(guān)系。