Demonstrates the use of asynchronous delegates in a simple sample , which factorizes numbers 演示如何在一個(gè)簡(jiǎn)單示例(求解數(shù)字的因數(shù))中使用異步委托。
The algorithm of this paper is applicable to two - dimension factorizing program , which includes one idb predicate 本文的算法適合于包含一個(gè)idb謂詞的二維可分解程序。
Further research of factorization method has been done to make it possible to factorize the multi - variable goal function 對(duì)因素分析法進(jìn)行了進(jìn)一步的研究,使其可以用于多變量目標(biāo)函數(shù)的分析。
Ang , b . w . , zhang , f . q . , choi , k . h . , 1998 . factorizing changes in energy and environmental indicators through decomposition . energy 23 ( 6 ) , 489 - 495 當(dāng)年的能源消費(fèi)總量和生活用能源消費(fèi)量的數(shù)據(jù)都可以在各年的《能源統(tǒng)計(jì)年鑒》中直接查到
It is studied factorizing a matrix over quaternion field to the product of two self - conjugate matrices . and some useful results are obtained 摘要研究了四元數(shù)矩陣分解為兩個(gè)自共軛矩陣乘積,其中有一個(gè)是非奇異陣的條件,得到了一些有用的結(jié)果。
Because the factorization attribute of logic program possess the property of uncertainty , exploring the fargoing factorizing algorithm need further study 由于邏輯程序的可分解屬性具有不確定性,因此尋找適用范圍更廣的分解算法有待于進(jìn)一步研究。
We have implemented a series of algorithm , which includes rule adornment , logic program adornment and factorization , magic transformation , factorizing magic transformation . the platform is characteristic of transplant , expansion 處理器中實(shí)現(xiàn)了本文中用到的一系列算法,其中包括:規(guī)則修飾、邏輯程序的修飾、魔集轉(zhuǎn)換、邏輯程序的分解、分解的魔集轉(zhuǎn)換。
( 3 ) the left - linear and right - linear recursive transformation and traditional magic transformation are contrasted with the factorizing magic transformation . afterward , the cost of tuple id is analyzed in factorizing magic transformation . based on the analysis two further optimization methods were put forward ( 3 )把分解的魔集轉(zhuǎn)換分別與左、右線性遞歸變換和傳統(tǒng)的魔集轉(zhuǎn)換做了分析對(duì)比,并對(duì)分解的魔集轉(zhuǎn)換中引入的元組id號(hào)帶來(lái)的開(kāi)銷(xiāo)做了分析。
This paper discussed the application of theories about advanced algebra in the factorization of multinomial , introduced some application methods , acquired the methods of judging if a multiple quadratic multinomial can be factorized and how it is factorized , and thus solved the theoretical problem of the factorization of a multiple quadratic multinomial 摘要討論了高等代數(shù)理論在多元多項(xiàng)式分解中的應(yīng)用,給出了若干應(yīng)用方法,得到了多元二次多項(xiàng)式可分解的判別法和分解方法,徹底解決了多元二次多項(xiàng)式分解的理論問(wèn)題。