Relationship between the apostol - bernoulli polynomials and gaussian hypergeometric functions 超幾何函數(shù)之間的關(guān)系
The number concentration of the activated cloud condensation nuclei ( ccn ) is described with the hypergeometric function 對(duì)降水物粒子引入分布譜函數(shù),采用了與之相適應(yīng)的微物理過(guò)程計(jì)算公式。
The six sigma black belt should be familiar with the commonly used probability , including : hypergeometric , binomial , poisson , normal , exponential , chi - square , student ' s t , and f 譯文:六西格瑪黑帶應(yīng)該熟悉常用的概率分布,包括超幾何分布、二項(xiàng)式分布、泊松分布、下態(tài)分布、指數(shù)分布、卡方分布、學(xué)者t分布和f分布。
The six sigma black belt should be familiar with the commonly used probability distributions , including : hypergeometric , binomial , poisson , normal , exponential , chi - square , student ' s t , and f 6西格瑪黑帶應(yīng)熟悉常用的概率分布,包括超幾何分布、二項(xiàng)式分布、泊松分布、正態(tài)分布、指數(shù)分布、卡方分布、學(xué)者t分布和f分布。
In this paper , the folio wings are introduced briefly : holonomic theory ; the basic idea that d . zeilberger used to prove identities using holonomic theory . and wu method is generalized to the non - commutative weyl algebra . furthermore , dialytic method of elimination is replaced by wu method , so the prove can be extended from the single - variable hypergeometric identities to multi - variable ones 本文簡(jiǎn)要介紹了完整性理論, d . zeilberger利用完整性理論證明恒等式的基本思想,將吳方法推廣到不可交換的weyl代數(shù)上,用吳方法取代了d . zeilberg在證明完整性函數(shù)恒等式的理論框架中的析配消元法,從而將這種證明理論由單變量超幾何恒等式的證明擴(kuò)展到多變量超幾何恒等式的證明。