By introducing a cyclic matrix , the obtained results can be generalized to mimo systems , and the condition for arbitrary pole assignments of linear multivariable systems under structured perturbation is obtained 并通過引入循環(huán)矩陣的方法將上述結果推廣到mimo系統(tǒng),得到了線性多變量系統(tǒng)在結構的可加性擾動下實現(xiàn)魯棒的任意極點配置的條件。
In this dissertation , the linear multivariable system with uncertainty is regarded as the main research object . we lucubrate three representational decoupling theories , and carry out the in - depth analysis and comparison from two sides : the stability robustness and decoupling performance 本文以不確定性線性多變量系統(tǒng)為研究對象,深入探討了三種具有代表性的解耦理論,并進行了魯棒性與解耦性的分析和比較。