And then , the thesis brings forward a new modeling method - abnormal customers recognition system based on generalized computing and classification and regression trees . the system is composed of multi - rules neural network learning part and classification and regression trees processing part 然后,通過(guò)深入研究多準(zhǔn)則神經(jīng)網(wǎng)絡(luò)和決策樹的特點(diǎn),論文提出了將多準(zhǔn)則神經(jīng)網(wǎng)絡(luò)應(yīng)用于決策樹的建模方法? ?基于多準(zhǔn)則神經(jīng)網(wǎng)絡(luò)和分類回歸樹的異動(dòng)客戶識(shí)別系統(tǒng)。
The work that is carried out by me for this project as follows : at first , works over the decision tree technology and the multi - rules neural network theory based on the generalized computing , outlines the advantages and disadvantages of the two theories , analyzes the possibility to combine multi - rules neural network with classification and regression trees , and studies some achievement in this field 為完成這個(gè)項(xiàng)目,本人所做的工作具體如下:首先研究了數(shù)據(jù)挖掘技術(shù)中的決策樹技術(shù)和基于廣義計(jì)算的多準(zhǔn)則神經(jīng)網(wǎng)絡(luò)理論以及兩種理論的優(yōu)缺點(diǎn)。分析了多準(zhǔn)則神經(jīng)網(wǎng)絡(luò)和決策樹相結(jié)合的可能性及優(yōu)勢(shì),并深入了解目前該方向的發(fā)展情況。
Along with the rapid development of the technology of data warehouse and data mining , customer relationship management ( crm ) becomes more and more important . on this need , we advanced the project of abnormal customers recognition system based on generalized computing and classification and regression trees ( cart ) 基于廣義計(jì)算和分類回歸樹異動(dòng)客戶識(shí)別系統(tǒng)這個(gè)項(xiàng)目,是在數(shù)據(jù)倉(cāng)庫(kù)技術(shù)和數(shù)據(jù)挖掘技術(shù)迅速發(fā)展的基礎(chǔ)上,針對(duì)企業(yè)客戶關(guān)系管理的迫切需要而提出的。
Classification and regression trees processing part introduces growing algorithm of cart , pruning algorithm of cart and selecting best tree algorithm etc . on the basis of the concerned new model , the thesis presents in details the designing of multi - rules neural network based cart system for abnormal customers recognition 在分類回歸樹部分,介紹了分類回歸樹的生長(zhǎng)算法、最小代價(jià)?復(fù)雜性剪枝算法以及最優(yōu)樹選擇等算法。提出了系統(tǒng)設(shè)計(jì)之后,論文詳細(xì)介紹了該系統(tǒng)的開發(fā),用以解決異動(dòng)客戶的識(shí)別問(wèn)題。
classification: n. 1.選別;分等,分級(jí);分選。 2.【動(dòng)、植】分類( ...regression: n. 1.復(fù)歸,回歸。 2.退步,退化。 3.【天文學(xué)】 ...tree: n. 1.樹〔主要指喬木,也可指較大的灌木〕。 ★玫瑰可 ...regression tree: 退化樹tree classification: 樹木分類tree-classification: 樹木分類cart classification and regression trees: 分類和衰退樹regression: n. 1.復(fù)歸,回歸。 2.退步,退化。 3.【天文學(xué)】退行。 adj. -sive ,-sively adv. classification: n. 1.選別;分等,分級(jí);分選。 2.【動(dòng)、植】分類(法)。 〔分類級(jí)別為: phylum 【動(dòng)物;動(dòng)物學(xué)】及 division 【植物;植物學(xué)】門,class 綱,order 目,family 科,genus 屬,species 種,variety 品種〕。 3.類別;等級(jí);(文件的)保密級(jí)。 a classification yard (車站的)調(diào)車場(chǎng)。 a tree: 樹狀; 一棵樹; 一蔸樹in a tree: 在樹上in the tree: 在樹上(非樹本身)in tree: 內(nèi)樹型; 入樹into tree: 放在樹中on the tree: 長(zhǎng)在樹上的,如果實(shí)一類的。; 在樹上(本身生出的); 在樹上(果實(shí)等)or tree: 或樹s tree: 無(wú)私奉獻(xiàn)的樹tree: n. 特里〔姓氏〕。 n. 1.樹〔主要指喬木,也可指較大的灌木〕。 ★玫瑰可以稱為 bush, 也可以稱為 tree. 2.木料,木材;木構(gòu)件;〔古語(yǔ)〕絞首臺(tái);〔the tree〕(釘死耶穌的)十字架;鞋楦。 3.樹形(物),世系圖,家系 (=family tree);【數(shù)學(xué)】樹(形);【化學(xué)】樹狀晶體。 a banana tree 香蕉樹。 an axle-tree 心棒,軸料。 a boot-tree 靴楦[型]。 a saddle-tree 鞍架。 at the top of the tree 在最高地位。 tree of Buddha 菩提樹。 tree of heaven 臭椿。 tree of knowledge (of good and evil) 【圣經(jīng)】知道善惡的樹,智慧之樹。 tree of life 生命之樹,生命力的源泉【植物;植物學(xué)】金鐘柏。 up a tree 〔口語(yǔ)〕進(jìn)退兩難,不知所措。 vt. 趕(獵獸等)上樹躲避;〔口語(yǔ)〕使處于困境;窮追;把鞋型插入(鞋內(nèi))。 adaptive regression: 適應(yīng)退化; 適應(yīng)消退age regression: 返童記憶; 返童現(xiàn)象analysis of regression: 回歸分析antitonic regression: 反序回歸atel regression: 阿蒂爾海退auxiliary regression: 輔助回歸bayesian regression: 貝葉斯回歸