theorem 1 ( bounded sum test ) a series of nonnegative terms converges if and only if it's partial sums are bounded above 定理1正項(xiàng)級(jí)數(shù)收斂的充分必要條件是:它的部分和數(shù)列有上界。
the paper discuss the upper bound of the distribution of the partial sums of identically distributed mixing random variables 摘要本文討論了同分布混合序列部分和分布函數(shù)的上界及其應(yīng)用。
on the joint limiting distribution of the partial sum and maximum of strongly dependent stationary normal sequence with random index 具有隨機(jī)足標(biāo)的強(qiáng)相依正態(tài)序列部分和與最大值的聯(lián)合極限分布
and a lot of pratical problems can be researched better by researching the convergence of partial sums of processes 這類(lèi)問(wèn)題進(jìn)一步發(fā)展就是隨機(jī)過(guò)程的收斂性問(wèn)題。因此,研究過(guò)程的部分和問(wèn)題,越來(lái)越引起人們的注意。
theorem 1 ( bounded sum test ) a series of nonnegative terms converges if and only if it's partial sums are bounded above 定理2(比較審斂法)設(shè)和都是正項(xiàng)級(jí)數(shù),且。若級(jí)數(shù)收斂,則級(jí)數(shù)收斂;反之,若級(jí)數(shù)發(fā)散,則級(jí)數(shù)發(fā)散。