This paper lays emphasis on the problem of extracting the isolated eigenmode in spectrum and the iteration accelerating 本文重點(diǎn)研究eigenmode模塊算法如何實(shí)現(xiàn)對(duì)頻譜中孤立本征模的萃取及其中遇到的加速迭代的問(wèn)題。
In the end of this paper we exam the capability of eigenmode in two kinds of physical model , the testing result shows that the capability of eigenmode , which compare with the function of magic and cst , accord with the practice and what we 本文最后用兩種物理器件模型對(duì)eigenmode模塊進(jìn)行性能測(cè)試,并與常用電磁粒子模擬軟件magic和ansoft公司的cst做比較,其測(cè)試結(jié)果基本符合實(shí)際要求。
It is very important to the electromagnetic simulations . this paper base on the theory and method of electromagnetic calculation and fdtd , associate with the particle simulation technology , develop an algorithm to resolve the problem of the eigenmode analysis of the cold - cavity in practice 本文從分析電磁場(chǎng)計(jì)算的基本原理和方法出發(fā),立足于時(shí)域有限差分法,結(jié)合計(jì)算機(jī)粒子模擬技術(shù)和數(shù)值計(jì)算原理,開發(fā)出一種能夠分析計(jì)算高功率微波器件冷腔諧振頻率以及本征模式的算法。
The instability in the natural convection boundary layer initiates with the buoyancy eigenmode and develops into non - linear stage with the turbulization of the buoyancy eigenmode . in the mean time , the invisid eigenmode at the inflexion point appears and begins to increase at the outer layer . experimental results show that the turbulent layer near the maximum velocity point can be detected while the reformed grashof number 自然對(duì)流邊界層的穩(wěn)定性由浮力振型失穩(wěn)開始,并隨著浮力振型的湍流化進(jìn)入非線性階段,與此同時(shí),無(wú)粘性振型在外層開始失穩(wěn)。實(shí)驗(yàn)結(jié)果表明,修正格拉斯霍夫數(shù)grashof