in the second chapter, we deal with two types of the problem : real and complex, and analyzes the backward perturbation of eigenpair of orthogonal matrix 第二章分“實(shí)的”和“復(fù)的”兩種情形,分別對(duì)正交矩陣的特征對(duì)的向后擾動(dòng)問題作了研究。
abstract : an improved inverse power method for calculating the eigenpair of a structure is presented based on the combination of the inverse power method and topological variation method of structures 文摘:將矢量逆迭代法與結(jié)構(gòu)拓?fù)渥兓ńY(jié)合起來,給出了一個(gè)用于求解結(jié)構(gòu)特征值及特征矢量的改進(jìn)的矢量逆迭代法。
an eigenvalue interlacing theorem is given and proved . each eigenpair is computed by bisection and generalized rayleigh quotient iteration . for computing all eigenvalues and eigenvectors is o ( n2r2 ), it is less than o ( n3 ), which is the computational complexity of lapack, when r n 在計(jì)算全部特征值和特征向量的情況下,算法的計(jì)算復(fù)雜性為o(n~2r~2),當(dāng)rn時(shí),優(yōu)于壇一一一~一續(xù)攀遨粼望廷二生掣夔lapack的計(jì)算復(fù)雜性o(n’)。