In 1728 euler gave differential equations for geodesics on surfaces . 1728年,奧伊勒繪出了曲面上測(cè)地線(xiàn)的微方程。
We shall deduce the result from a lemma about euler trails in directed multigraphs . 我們用一個(gè)關(guān)于有向重圖中尤拉跡的引理來(lái)證明這個(gè)定理。
Euler then shows how he can get the differential equation whose solutions are called cylinderical waves . 然后,尤拉展示他怎樣得到其解稱(chēng)為圓柱波的微分方程。
Neither euler nor lagrange envisioned the rich possibilities which their work on complex integers opened up . 無(wú)論Euler或Lagrange都沒(méi)有預(yù)想到他們關(guān)于復(fù)整數(shù)的工作所打開(kāi)的豐富可能性。
This leads us to another contribution of leonhard euler to graph theory, namely euler's polyhedron theorem or simply euler's formula . 這是我們引向L尤拉對(duì)圖論的另一個(gè)貢獻(xiàn),即尤拉多面體定理,或簡(jiǎn)稱(chēng)尤拉公式。