pim bases on the proof systems for the late and early bisimulation congruences and the open bisim-ulation congruences . we implemented our version of the unique fixpoint induction to deal with recursions 然后,以lin的關于遲早互模擬的證明系統(tǒng)和li的關于開互模擬的證明系統(tǒng)為理論基礎,我們實現(xiàn)了-演算的第一個交互式驗證工具-pim。
the results about the unique fixpoint induction are of theoretical significance . the proof assistant pim is of importance from the application point of view . moreover, the verification of the ab protocol and the discovery of an error in r . milner's book point out the value of our work 上述結果中的有關唯一不動點歸納法的研究具有重要的理論意義,驗證工具pim具有明確的應用價值,而對ab協(xié)議的驗證及r.milner的著作中一個錯誤的發(fā)現(xiàn)更是我們工作的價值的體現(xiàn)。
our work includes the following three aspects . first, aiming at designing a suitable version of the unique fixpoint induction from the application point of view, we generalized lin's version and got the final version we needed . second, we implemented pim, the first interactive proof assistant for the-calculus 主要工作和成果包括如下三個方面:首先,為了處理遞歸,我們對lin給出的適合于理論研究的唯一不動點歸納法進行了擴展,得到了所需要的適合于應用的一般化的版本。
fixpoint meaning:[Computer] < mathematics > The fixed point of a function, f is any value, x for which f x = x. A function may have any number of fixed points from none (e.g. f x = x+1) to infinitely many (e....