Feng xiangchu , male , born in 1962 , professor , ph . d . supervisor . his main research interests include image processing , the theory of pdes and its application , wavelets and its applications 馮象初,男, 1962年生,教授,博士生導(dǎo)師,主要研究方向?yàn)?em class="hot">偏微分方程理論及其應(yīng)用、小波理論及其在圖像處理中的應(yīng)用。
However , linearization of the boussinesq equation 624 science in china : series d earth sciences allows the derivation of analytical solutions valid for specific cases . here we follow the methodology of brutsaert 20 22 to linearize the diffusion term in : 22cossin , hkpdhkhnttffxfx where p is the linearization constant taken to be 0 . 5 usually and d l is the mean aquifer depth . the clas - sical separation of variables method for partial differ - ential equations is adopted to give the analytical solu - tion of eq 對(duì)于方程2 , brutsaert進(jìn)行了如下的線(xiàn)性化處理20 22 22cossin , hkpdhkhnttffxfx ? ? ? ? ? ? 3這里p是線(xiàn)性化常數(shù)一般取值為0 . 5 20 , 21 ,而d l是整個(gè)潛水面的平均厚度的線(xiàn)性化參數(shù),下面采用science in china ser . d earth sciences第4期? ?田向軍等:基于boussinesq - storage方程同時(shí)考慮水分儲(chǔ)存和入滲的地下徑流機(jī)制377的是偏微分方程理論中比較經(jīng)典的分離變量法來(lái)給出以上這個(gè)經(jīng)過(guò)線(xiàn)性化處理后的方程的解析解
Nonlinear functional analysis is a subject . old but fashionable . its abundant theories and advanced methods are providing powerful and fruitful tools in solving ever increasing nonlinear problems in the fields of science and technology . though the theories of integral and differential equations in banach spaces , as new branches of nonlinear functional analysis . have developed for no more than thirty years , they are finding extensive applications in such domains as the critical point theory , the theory of partial differential equa - tions , eigenvalue problems . and so on , are attracting much more attentions from both pure and applied mathematicians 非線(xiàn)性泛函分析是一門(mén)既悠久又現(xiàn)代的學(xué)科,它的豐富理論和先進(jìn)方法為解決當(dāng)今科技領(lǐng)域?qū)映霾桓F的非線(xiàn)性問(wèn)題提供了卓有成效的工具,作為自非線(xiàn)性泛函分析中衍生發(fā)展起來(lái)的新的分支, banach空間微分方程和積分方程理論雖經(jīng)歷了不足三十年的發(fā)展過(guò)程,然而它已被廣泛應(yīng)用于諸如臨界點(diǎn)理論,偏微分方程理論,特征值問(wèn)題等許多領(lǐng)域,其重要性日益凸現(xiàn)出來(lái)