Momentum mapping on the fundamental groupoid 基本群胚上的動量映射
In this paper , the authors give the globally classfication of the maximal totally geodesic submanifolds with maximal rank of normal riemannian symmetric spaces by computing the fundamental group 摘要通過計(jì)算全測地子流形的基本群,確定了緊正規(guī)黎曼對稱空間的極大的極大秩全測地子流形的整體分類。
The notion of fundamental group also came from topology . there are close relations with simple connectedness in representation theory of algebras for fundamental group , as was in algebraic topology 基本群的概念同樣來自拓?fù)鋵W(xué),同它在代數(shù)拓?fù)渲幸粯?,它在表示論中與單連通性也有密切的聯(lián)系。
E for an algebra of minimal representation - infinite type with preprojective component , it is simply connected if and only if the vanishing of 1 hochschild cohomology group ; the same conclusion is true for a general algebra with minimal representation - infinite type . in chapter 3 , we computed the fundamental group for hereditary algebra and other special cases , and studied the fundamental group under one point extension 在第二章中我們得到了極小無限表示型代數(shù)單連通性的一些結(jié)論:對于具有預(yù)投射分支的極小無限表示型代數(shù),它是單連通當(dāng)且僅當(dāng)其一次hochschild上同調(diào)群為零;而對于一般情形的極小無限表示型代數(shù),也是如此。第三章中,我們對基本群在遺傳代數(shù)等幾種特殊情況下,對于一些例子作了計(jì)算。