The paper extracts the limit , proves the inquation and confirms existence of roots , skillfully using langrangian middle value theorem 摘要應(yīng)用拉朗日中值定理求極限,證明不等式以及確定方程的根。
This thesis presents an effective way to design pid controller through a combination of adverse deduce and genetic algorithm . the relationship between pid parameter and the root of the characteristic equation of the closed loop control system has been found out directly 本文直接找出pid參數(shù)與閉環(huán)控制系統(tǒng)的特征方程的根之間的關(guān)系,只要使特征方程的根在z平面的單位圓內(nèi)任意取值,然后再求出相應(yīng)的pid參數(shù),則閉環(huán)控制系統(tǒng)必然是穩(wěn)定的。
As long as the root of the characteristic equation is within the unit circle of z - plane and the corresponding pid parameter is got , the closed loop control system is sure to be stable . although the root of the characteristic equation can vary within the unit circle of z - plane , different value may affect the control property differently . therefore , it is better to optimize the root , here the optimizing method is carried out by genetic algorithm 本文所采用的這種確定pid參數(shù)的方法,雖然可以使特征方程的根在z平面的單位圓內(nèi)任意取值,但各種取值情況對變風(fēng)量空調(diào)系統(tǒng)的控制品質(zhì)的影響卻不同,因此,要對各種特征方程的根的取值情況進(jìn)行尋優(yōu),本文采用遺傳算法對特征方程的根進(jìn)行尋優(yōu),從而使控制器的參數(shù)得以優(yōu)化。
方程: equation的: 4次方是 The fourth power of 2 i ...根: root方根;方程的根: root特性方程的根: performance equation root方程式的根: root of equation(方程的)解: solution二次方程的: quadratic方程的次: degree of equation方程的端邊: member of an equation方程的軌跡: locus of an equation方程的階: order of equation方程的解集: solution set of equation方程的設(shè)立: construction of equation方程的圖: graph of an equation; graph of equation差分方程的解: solution of difference equation方程的不變量: invariant of an equation方程的法線式: normal form of equation方程的積表示: product representation of equation方程的近似解: john slater douglas rayner hartree積分方程的核: kernel of an integral equation; kernel of integral equation; nucleus of an integral equation積分方程的和: kernel微分方程的階: order of a differential equation; order of differential equation代數(shù)方程的結(jié)式: resultant of an algebraic equation代數(shù)方程的判別式: discriminant of an algebraic equation