The mechanical quadrature methods and their splitting exprapolations for first - kind boundary integral equations on polygonal regions 曲邊多角形域上第一類邊界積分方程的機(jī)械求積算法與分裂外推
Especially , a deep research is paid to integral . an algorithm for computing area of regions bounded by quadratic nurbs curves is presented 特別是對(duì)由求積算法深入地研究,可進(jìn)行二次nurbs曲線下面積的計(jì)算,并導(dǎo)出面積的精確計(jì)算公式。
2 . belief propagation decoding algorithm is systematically summarized , and the principle of decoding for ldpc codes is discussed . sum - product algorithm on several different metrics and min - sum algorithm are detailed 詳細(xì)介紹了ldpc碼的置信傳播譯碼算法,對(duì)ldpc碼迭代譯碼原理進(jìn)行了討論,并具體給出了最小和算法與不同量度上的和積算法。
Although long ldpc codes are superior to turbo codes , it is not the case for short ldpc codes . so the modification of decoding algorithm is essential to the performance improvements for ldpc short codes 因此, ldpc的編譯碼方面還需要進(jìn)一步研究,例如碼的構(gòu)造及線性編碼問(wèn)題,如何對(duì)和積算法進(jìn)行改進(jìn)以適應(yīng)有環(huán)圖上的譯碼從而在根本上提高ldpc碼的性能。
2 . after a brief introduction to belief propagation algorithm and a close research on the message flowing schedule , a new serial concatenated decoding method of ldpc codes based on the matrix decomposition and the two - way schedule is proposed in this thesis 在深入地研究了ldpc碼的基于因子圖模型的和積算法基礎(chǔ)之上,給出了一種雙向信息傳遞策略的實(shí)現(xiàn)方案,提出了一種ldpc碼的串行級(jí)聯(lián)譯碼算法。