By using the limit theorem , the authors discuss and prove conclusions of asymptotic property of mean point in second mean value theorem for integrals in concessional terms believing that they will take an important effect in integral 摘要利用極限理論,給出并證明了減弱條件的積分第二中值定理“中值點(diǎn)”的漸近性的幾個(gè)結(jié)論,相信在積分學(xué)中有著很重要的作用。
The general results of the asymptotic property of the intermediate value of the first and second mean value theorems for the integrals are discussed , and mainly the asymptotic property of the second mean value theorem for the integrals is deduced from the weak condition 摘要討論積分第一和第二中值定理的中間點(diǎn)的漸近性質(zhì)的一般結(jié)果,主要證明積分第二中值定理的中間點(diǎn)在弱條件下的漸近性質(zhì)。
第二: second中: hit; fit exactly值: price; value定理: theorem西中值定理: cauchy中值定理: intermediate value theorem; law of the mean; mean value theorem; theorem of mean第一中值定理: first law of the mean; mean value theorem廣義中值定理: extended theorem of mean value積分中值定理: mean value theorem of integrals柯西中值定理: cauchy mean value theorem; mean value theorem#cauchy.27s mean value theorem泰勒中值定理: taylor's theorem微分中值定理: mean value theorem拉格朗日中值定理: mean value theorem第二均值定理: second mean value theorem中值定理的一個(gè)新證明: a new method of proving lagrange value theorem中值定律: law of the mean邊(界)值定理: boundary value theorem邊值定理: boundary value theorem初值定理: initial value theorem; initial-value theorem單值定理: monodromy theorem賦值定理: axiom of assignment介值定理: intermediate value theorem; lacation principle均值定理: mean value theorem臨界值定理: threshold theorem平均值定理: average value theorem; first mean value theorem; law of the mean; theorem of mean value; theorem of the mean