In this thesis , an incremental - iterative solution procedure using the modified newton - raphson iteration is used to solve geometrically nonlinear problems 在涉及幾何非線(xiàn)性問(wèn)題的數(shù)值方法中,通常都采用增量和迭代分析的方法。
Based on this division , with the method of iteration , the influencing factors and formulas for convergence speed are deduced and discussed 在此基礎(chǔ)上,對(duì)于主動(dòng)變形引起的被動(dòng)變形,采用迭代分析的方法,得出了收斂速度的影響因素及其表達(dá)式,并進(jìn)行了相關(guān)討論。
The solution of the original nonlinear problem is reasonably approximated by means of a series of random vibration analyses for the linearized structure using the pseudo excitation method 本文方法充分利用了虛擬激勵(lì)法求解復(fù)雜線(xiàn)性結(jié)構(gòu)高效、精確的優(yōu)點(diǎn),以一系列線(xiàn)性問(wèn)題的迭代分析,迅速地求得原非線(xiàn)性問(wèn)題合理的近似解。
Subsequently , the thesis improves the simplified method , and puts forward an iterative algorithm to consider the influence by raft rigidity to substratum settlement and stab deformation . then , numeric examples are calculated to testify its validity . finally , the application of the method is introduced on a factual project and differences between the simplified method and the improved method are discussed 在此基礎(chǔ)上,本文改進(jìn)了簡(jiǎn)化共同作用分析方法,提出了考慮筏板剛度對(duì)下臥層沉降的影響和樁端刺入變形,滿(mǎn)足樁?土?筏位移協(xié)調(diào)的共同作用迭代分析算法,并通過(guò)數(shù)值算例驗(yàn)證了該算法的有效性。