no problem 毫無(wú)問(wèn)題; 考試家族; 沒(méi)問(wèn)題; 無(wú)問(wèn)題
problem n. 1.問(wèn)題,課題;疑難問(wèn)題;令人困惑的情況。 2.【數(shù)、物】習(xí)題;作圖題。 3.(象棋的)布局問(wèn)題。 the problem of unemployment 失業(yè)問(wèn)題。 His whole conduct is a problem to me. 他的一切行為我都不理解。 adj. 1.成問(wèn)題的;難處理的。 2.關(guān)于社會(huì)問(wèn)題的。 a problem child 【心理學(xué)】問(wèn)題兒童;難管教的孩子。 a problem novel [play] (反映社會(huì)問(wèn)題等的)問(wèn)題小說(shuō)[戲劇]。 sleep on [upon, over] a problem 把問(wèn)題留到第二天解決。
Similarly , the minimization problem is also transformed into a multiobjective problem by using the other order relations , so by doing the multiobjective problem a solution of the primitive problem can be obtained 而對(duì)最小化問(wèn)題,也可定義區(qū)間數(shù)之間的另一序關(guān)系,同樣可把原問(wèn)題轉(zhuǎn)化為一個(gè)多目標(biāo)問(wèn)題,通過(guò)求此多目標(biāo)問(wèn)題得到原問(wèn)題的解。
Further , this thesis brings forward a method based on multiobjective coefficients with triangular fuzzy numbers , and lays undue emphasis on the multiobjective problem with general fuzzy numbers in objective coefficients 進(jìn)一步,本文還就目標(biāo)系數(shù)為三角型模糊數(shù)的多目標(biāo)問(wèn)題給出了?種解法,同時(shí)對(duì)目標(biāo)系數(shù)為一般模糊數(shù)的多目標(biāo)問(wèn)題也作了重點(diǎn)討論。
In this thesis , the optimality sufficiency conditions and duality theory are discussed in multiobjective nonlinear programming involving ( f , a , p , d ) - convexity and generalized ( f , a , p , d ) - convexity . at that time , an algorithm is discussed for nonlinear multiobjective problem 本文主要討論了( f , , , d ) -凸及廣義( f , , , d ) -凸條件下非線性多目標(biāo)規(guī)劃問(wèn)題的最優(yōu)性充分條件和對(duì)偶理論,同時(shí),也探討了求解具有線性等式約束的非線性多目標(biāo)規(guī)劃問(wèn)題的一種新算法。
To maximize the interval objective function , the order relations are defined by the right limit , the left limit , the center and the half with of an interval . the maximization problem with the interval objective functions is converted into a multiobjective problem by using the order relations 就最大化區(qū)間目標(biāo)函數(shù)而言,通過(guò)在區(qū)間數(shù)之間的左端點(diǎn)、右端點(diǎn)、中點(diǎn)以及區(qū)間的半長(zhǎng)度引入序關(guān)系,然后再通過(guò)所定義的這些序關(guān)系,可把問(wèn)題轉(zhuǎn)化為求解一個(gè)多目標(biāo)問(wèn)題。
According to order relations defined between fuzzy numbers , the pareto less optimal solution and the pareto optimal solution are defined , then a fuzzy evaluation function is introduced into a multiobjective programming problem , this method results in a multiobjective programming problem been converted into a one objective programming problem , accordingly the solution by this method is the pareto less optimal solution to the primitive problem , which is given proof a multiobjective problem with general fuzzy number coefficients is also further discussed , by _ cutset of fuzzy sets a multiobjective problem can be transformed into a interval linear programming problem , and using the method of the previous chapter , we can obtain the pareto less optimal solution 從模糊數(shù)之間的序關(guān)系出發(fā),分別定義了弱較優(yōu)解和較優(yōu)解,然后對(duì)模糊多目標(biāo)問(wèn)題引入模糊評(píng)價(jià)函數(shù),將多目標(biāo)化為單目標(biāo),在此也證明了求得的解為原問(wèn)題的弱較優(yōu)解。還討論了系數(shù)為一般模糊數(shù)的多目標(biāo)問(wèn)題,通過(guò)模糊集的水平集可將多目標(biāo)問(wèn)題轉(zhuǎn)化為區(qū)間數(shù)線性規(guī)劃問(wèn)題,并利用上一章所講的方法,得到原問(wèn)題的弱較優(yōu)解。最后,對(duì)變量為模糊數(shù)的線性規(guī)劃問(wèn)題也進(jìn)行了討論。