The full newton - raphson iterative method with line search is adopted for solution of the obtained discretized equations 對(duì)導(dǎo)得的離散化非線(xiàn)性代數(shù)方程組采用帶線(xiàn)性搜索的完全newton - raphson方法迭代求解。
According to newton - raphson ( nr ) method , a new power flow method based on reliable power flow technique is proposed 摘要根據(jù)牛頓法的基本原理,建立了一種基于輻射配網(wǎng)潮流技術(shù)的求解有環(huán)配電網(wǎng)潮流的新模型。
When calculation , newton - raphson iteration was applied to solve the set of nonlinear navier - stokes equations in the flow area 在計(jì)算上,流體區(qū)域內(nèi)采用newton - raphson迭代求解非線(xiàn)性的navier - stokes方程組。
In this thesis , an incremental - iterative solution procedure using the modified newton - raphson iteration is used to solve geometrically nonlinear problems 在涉及幾何非線(xiàn)性問(wèn)題的數(shù)值方法中,通常都采用增量和迭代分析的方法。
Using the newton - raphson iteration method , the node coordinates of elements on the reference configuration or the current configuration , can be obtained efficiently 使用牛頓?瑞費(fèi)遜迭代法,可快捷地得到初始構(gòu)形或當(dāng)前構(gòu)形上的節(jié)點(diǎn)坐標(biāo)。
During the solving process , the increment form can approximate the differential form and newton - raphson iteration techniques are introduced into the computation 求解實(shí)際中,可用增量形式代替微分形式,并且采用newton - raphson增量迭代法進(jìn)行計(jì)算。
The final nonlinear algebraic equation set is solved using the step - by - step newton - raphson iteration and the deformed curves for the corresponding state of each load increment can be determined 對(duì)應(yīng)每個(gè)荷載增量,可求得鋼管混凝土拱在相應(yīng)狀態(tài)下的變形曲線(xiàn)。對(duì)各荷載增量進(jìn)行反復(fù)迭代,直至得到荷載的極限值。
A corresponding nonlinear finite element program in fortran is presented and a new stability analysis method about complex slope is proposed , using the newton - raphson method to solve the nonlinear equations 根據(jù)原理推導(dǎo)出了穩(wěn)定的計(jì)算公式,建立了非線(xiàn)性分析的實(shí)用方法,并采用牛頓?拉斐遜方法對(duì)本文所建立的非線(xiàn)性方程組進(jìn)行求解。
The calculating results are almost equal whether newton - raphson method or its modified form is used , especially with more times of loading , which indicates that essential of the two methods is same 無(wú)論是采用牛頓-拉弗遜法還是其修正的方法,結(jié)果相差不多,特別是加載次數(shù)增多時(shí),兩者的計(jì)算數(shù)值趨于一致,所以其實(shí)質(zhì)上是完全相同的。