tree n. 特里〔姓氏〕。 n. 1.樹(shù)〔主要指喬木,也可指較大的灌木〕。 ★玫瑰可以稱(chēng)為 bush, 也可以稱(chēng)為 tree. 2.木料,木材;木構(gòu)件;〔古語(yǔ)〕絞首臺(tái);〔the tree〕(釘死耶穌的)十字架;鞋楦。 3.樹(shù)形(物),世系圖,家系 (=family tree);【數(shù)學(xué)】樹(shù)(形);【化學(xué)】樹(shù)狀晶體。 a banana tree 香蕉樹(shù)。 an axle-tree 心棒,軸料。 a boot-tree 靴楦[型]。 a saddle-tree 鞍架。 at the top of the tree 在最高地位。 tree of Buddha 菩提樹(shù)。 tree of heaven 臭椿。 tree of knowledge (of good and evil) 【圣經(jīng)】知道善惡的樹(shù),智慧之樹(shù)。 tree of life 生命之樹(shù),生命力的源泉【植物;植物學(xué)】金鐘柏。 up a tree 〔口語(yǔ)〕進(jìn)退兩難,不知所措。 vt. 趕(獵獸等)上樹(shù)躲避;〔口語(yǔ)〕使處于困境;窮追;把鞋型插入(鞋內(nèi))。
Thirdly , dm technology is organized into method space . it presents the enhancement to id3 decision tree algorithm , which combined with information gain and property probability . the algorithm is putted into useage of customer member card 將dm方法用于方法空間的設(shè)計(jì),對(duì)傳統(tǒng)的id3決策樹(shù)算法進(jìn)行改進(jìn),將信息增益的計(jì)算方式與屬性值的概率相結(jié)合,使其更具針對(duì)性。
For example , you can use the microsoft decision trees algorithm not only for prediction , but also as a way to reduce the number of columns in a dataset , because the decision tree can identify columns that do not affect the final mining model 例如,您不僅可以將microsoft決策數(shù)算法用于預(yù)測(cè),而且還可以將它用作一種減少數(shù)據(jù)集的列數(shù)的方法,因?yàn)闆Q策樹(shù)能夠識(shí)別出不影響最終挖掘模型的列。
Decision tree algorithm is one of the core technique algorithm of dm , it is often used to predict models , and it can divide amount of data into different types purposefully , so that it can let others find out some valuable and potential information 決策樹(shù)方法是dm的核心技術(shù)算法之一,它是一種常用于預(yù)測(cè)模型的算法,它通過(guò)將大量數(shù)據(jù)有目的地分類(lèi),從中找到一些具有商業(yè)價(jià)值的、潛在的信息。
( 3 ) on the basis of the dimensioning principle of correctness , integrality , clearness and rationality , utilizing the modified spanning tree algorithm in graph theory to ascertain the non - functional dimensions , accomplish the dimensioning mode analysis of the part ( 3 )根據(jù)尺寸標(biāo)注所要求的正確性、完整性、清晰性及合理性等原則,用改進(jìn)了的圖論中的生成樹(shù)算法,確定出零件的非功能尺寸,完成零件尺寸標(biāo)注模式的分析。
3 discusses the foreground of dataming technique using in traditonal enterprise . research the the development techinque based on sqlserver and decision tree algorithm . then takes the equipment maintain system as an example , develops the maintain prediction module based on decision tree algorithm 3探索了數(shù)據(jù)挖掘技術(shù)在化工生產(chǎn)型企業(yè)應(yīng)用的可能,以設(shè)備維修管理中的一個(gè)選題為例,深入介紹了基于sqlserver數(shù)據(jù)挖掘開(kāi)發(fā)方法,以及決策樹(shù)算法。
3 . through the study on decision tree c4 . 5 algorithm , taking criminal ' s information database , we use c4 . 5 decision tree algorithm to generate a decision tree , and use post - pruning method to pruning the decision tree . and then according to the decision tree , we obtain the classification rules finally ( 3 )通過(guò)對(duì)決策樹(shù)c4 . 5算法的研究,以罪犯信息庫(kù)為例,使用c4 . 5決策樹(shù)算法生成決策樹(shù),并利用事后修剪法對(duì)決策樹(shù)進(jìn)行修剪;最后由決策樹(shù)產(chǎn)生分類(lèi)規(guī)則。
In the paper , we have built the binary tree , m - branch tree and tree algorithms based on the test data . what is more , the cluster results have improved obviously after we have developed these algorithms , namely , we have thought over the density information of the data during the course 并在對(duì)實(shí)驗(yàn)數(shù)據(jù)分析的基礎(chǔ)上,分別對(duì)已建立的二叉樹(shù)、 m叉樹(shù)和樹(shù)的方法加以改進(jìn),即在建立上述模型的過(guò)程中充分考慮到數(shù)據(jù)分布的密度信息,使得聚類(lèi)效果有了進(jìn)一步的提高。
A new architecture of the dss based on dw is proposed by author , added by olap and dm decision tree algorithm . at last , a foodmart dss is designed and developed by means of the new architecture and new technology . the main contents of paper are as followings : firstly , it analyzes the new architecture of dss based on dw 本文在分析了傳統(tǒng)dss的不足和缺陷后,引入數(shù)據(jù)倉(cāng)庫(kù)及相關(guān)技術(shù),對(duì)基于數(shù)據(jù)倉(cāng)庫(kù)的dss的體系結(jié)構(gòu)作了研究和探討,用olap對(duì)dss用戶空間作了改進(jìn)設(shè)計(jì),用dm中的決策樹(shù)算法改進(jìn)了dss的方法空間,最后,以食品銷(xiāo)售決策支持系統(tǒng)為例,對(duì)基于數(shù)據(jù)倉(cāng)庫(kù)的決策支持系統(tǒng)的實(shí)現(xiàn)問(wèn)題作了嘗試, ,有效地改進(jìn)了dss的分析效率和質(zhì)量。
This paper also describes how to establish a distributed enterprise application by the example of using j2ee model to establish zxmec ( zx medical e - commerce ) . then with the guidance of general process model , we have completed bid - interesting analysis of zxmec and realized two decision tree algorithms 本文還以構(gòu)建基于j2ee模型的振湘電子商務(wù)系統(tǒng)( zxmec )為例,描述了如何建立分布式的企業(yè)級(jí)應(yīng)用,并在通用過(guò)程模型的指導(dǎo)下,在振湘電子商務(wù)系統(tǒng)中進(jìn)行了招標(biāo)興趣度分析,實(shí)現(xiàn)了兩種決策樹(shù)算法id3和c4 . 5 。