The statistical linearization adjoint method ( slam ) is utilized in the numerical simulations of this paper 本文的仿真采用了統(tǒng)計(jì)線性化共軛方法。
Then analyze the motion and dynamics; induce the dynamics equation; use multiple-step gear estimation and correction to solve the time domain; use equivalent method of statistical linearization to solve the frequency domain 進(jìn)行了運(yùn)動(dòng)學(xué)分析和動(dòng)力學(xué)分析,推導(dǎo)了動(dòng)力學(xué)方程,采用多步gear預(yù)估?校正法進(jìn)行時(shí)域求解,采用等效的統(tǒng)計(jì)線性化方法進(jìn)行頻域求解。
First, proper initial conditions between ekv and target are the premise of hit-to-kill . capture region is described by equations of relative motion defined in modified polar coordinate while phasetrajectory graph is introduced . and the disturbance of initial condition biase is analyzed by cadet through statistical linearization of ekv dynamical model 本文在修正極點(diǎn)坐標(biāo)系中建立攔截器和目標(biāo)之間的相對(duì)運(yùn)動(dòng)方程,結(jié)合相平面軌跡圖,分析了大氣層外動(dòng)能攔截器的攔截區(qū);對(duì)大氣層外動(dòng)能攔截器動(dòng)力學(xué)模型進(jìn)行統(tǒng)計(jì)線性化,采用協(xié)方差分析描述函數(shù)法,分析了初始狀態(tài)誤差對(duì)彈道的影響。