switch n. 1.(樹上折下的)細(xì)樹枝;軟鞭子;鞭打。 2.假發(fā);(尾巴上的)毛簇。 3.〔美國〕【鐵道】道岔扳子,軌閘轉(zhuǎn)轍器;側(cè)線。 4.【電學(xué)】開關(guān);電閘;電鍵;轉(zhuǎn)換器;【電話】接線臺(tái)。 5.【軍事】斜行壕。 6.(思想等的)大轉(zhuǎn)變。 7.〔美國〕(金融機(jī)構(gòu)和銷售店的)電腦化聯(lián)網(wǎng)。 a change-over switch 轉(zhuǎn)換開關(guān),轉(zhuǎn)向開關(guān)。 a pull switch 拉線開關(guān)。 a three wire switch 雙聯(lián)開關(guān)。 a time switch 定時(shí)斷路器。 a clock switch 定時(shí)開關(guān)。 a line switch (自動(dòng)電話的)尋線機(jī),預(yù)選器;線路開關(guān)。 vt. 1.鞭打;擺動(dòng);搖(尾);猛然搶去。 2.掛斷(…的電話)(switch sb. off);關(guān)閉(電流),關(guān)(電燈) (off; out)。 3.通(電流),接通(電話給某人),開(電燈) (on)。 4.改變,轉(zhuǎn)變(思想、談話等);【鐵道】給扳道岔;調(diào)配(車廂)。 vi. 1.鞭打。 2.【鐵道】扳道岔;調(diào)車。 3.掛斷電話 (off)。 4.轉(zhuǎn)換,轉(zhuǎn)變。 switch an electric light on [off] 開[關(guān)]燈。 switch off to another like of thought 改變想法[思路]。 Let's switch. 〔美國〕走吧;開動(dòng)吧。 I'll be switched. 〔美口〕〔表示否定、驚訝〕(I'll be switched if you do. 你要是能的話我就把頭砍掉)。 switch off [on] 不收聽[收聽](某一廣播)。 switch through 【電信】轉(zhuǎn)接。
And considing the possible of signal distorts the situation in this switching process 并考慮了信號(hào)在此轉(zhuǎn)換過程中的可能失真情況。
The thesis also discusses the switch process between the big and small generators for wtg 本文還對(duì)風(fēng)力機(jī)的大小電機(jī)切換進(jìn)行了簡要的理論分析和設(shè)計(jì)。
Emphases on reducing nitrogen oxide emission . analyzed switching process affect on oxygen content, temperature in htac 從理論上分析了氮氧化物產(chǎn)生的機(jī)理,從影響氮氧化物生成的因素上分析了換向過程對(duì)氧氣濃度、爐溫的影響。
In the case of correlations between noises, a switch process can also be induced by the cross-correlation intensity between noises and by the fluctuation of synthesis reaction rate in the genetic regulatory system 其次,由于噪聲的來源往往是相互關(guān)聯(lián)的,這就決定了系統(tǒng)的噪聲是相互關(guān)聯(lián)的,所以接下來,本文對(duì)原有l(wèi)e引入噪聲之間的關(guān)聯(lián)。
The intra-lingual translation is not a simple code-switching process, but a continuous interpretation of the source text in the same context, under the condition of a certain different space and time 摘要語內(nèi)翻譯不是簡單的同一語言內(nèi)部的語碼轉(zhuǎn)換過程,而是在同一語境內(nèi)部,在保持一定時(shí)空距離的條件下,譯者對(duì)原作做出的新的解釋,并且是在對(duì)傳統(tǒng)繼承基礎(chǔ)上的新的發(fā)展。
Based on detail analysis of process states and switch processes of the embedded system, the design principle of process scheduling is given, and the progress schedule of embedded system developing platform kernel layer is designed and realized 詳細(xì)分析了嵌入式系統(tǒng)開發(fā)平臺(tái)的進(jìn)程狀態(tài)及其轉(zhuǎn)換過程,給出了進(jìn)程調(diào)度思想,設(shè)計(jì)并實(shí)現(xiàn)了嵌入式系統(tǒng)開發(fā)平臺(tái)核心層進(jìn)程調(diào)度。
This article will be helpful in theoretical analysis, in which the action of single mode fiber in the self-q-switching process has been discussed, generally the influence of length of single mode fiber, which also is difficulty to the self-q-switching system 最后簡要討論了該系統(tǒng)中單模光纖在調(diào)q過程中起到的作用,單模光纖長度對(duì)調(diào)q效果起到的影響,指出系統(tǒng)對(duì)于其長度的要求是受激布里淵散射調(diào)q的一個(gè)難點(diǎn),并對(duì)今后研究的方向提出了一些建議。
In this part, the high-frequency series inverter with resonant pole capacitor is introduced mainly . the current-exchanging processes of the inverter in different working modes are analyzed, how to reduce the switching loss is discussed, and the calculating methods of snubber capacitor c, factor angle switching frequency and pulse width pw are given in optimum switching process . and results of simulation and experiment verify the validity of theoretic analysis 接著重點(diǎn)研究了含有諧振極無損緩沖電容的逆變器,對(duì)其換流過程中的不同工作狀態(tài)進(jìn)行分析,討論了如何減小逆變器的開關(guān)損耗,給出了最佳工作狀態(tài)下緩沖電容c、感性角、開關(guān)頻率、觸發(fā)脈沖的脈寬pw的詳細(xì)計(jì)算方法,并通過大量的仿真和實(shí)驗(yàn)波形證明了理論分析的正確性。
With the development of electronic technology in the field of high-frequency and high-power, power mosfet is gradually enhancing its important status in semiconductor apparatus and is being widely applied in power converters as switch . with the increasing of the operating frequency ( > 200khz ), the energy loss caused by parasitic capacitance will affect the efficiency of power transforming in converters . especially in the applications of high frequency power supply using mosfet as main devices ( the unit of frequency is mhz ), the energy loss caused by the switch process will badly affect its efficiency 隨著電力電子技術(shù)進(jìn)一步向高頻的大功率用電領(lǐng)域發(fā)展,功率mosfet在各種電力半導(dǎo)體器件中的重要地位日益顯著,使用功率mosfet作為開關(guān)器件的功率轉(zhuǎn)換電路也日益增多,但隨著器件開關(guān)頻率的提高(大于200khz),由器件極間電容引起的能量損耗將會(huì)影響到功率轉(zhuǎn)換電路的能量傳輸效率,特別是在以mosfet作為開關(guān)器件的高頻感應(yīng)加熱電源中(工作頻率可達(dá)兆赫),mosfet在開關(guān)過程中的能量損耗嚴(yán)重影響到電源的效率,因此如何減小開關(guān)器件的損耗提高高頻功率轉(zhuǎn)換線路的效率成為電力電子技術(shù)領(lǐng)域的重要研究課題之一。
In this dissertation, the principle of self-q-switching fiber laser, common kinds of er-doped fiber laser and q-switching technology have been introduced and analyzed . the emphasis of the dissertation was self-q-switching er-doped fiber laser based on stimulated-brillioun-scattering ( sbs ), in which the theoretical analyze and the emulating experiment were studied in detail . the physical model of the self-q-switching process has been presented in this dissertation 本文闡述了自調(diào)q光纖激光器的原理,分析了常見的摻鉺光纖激光器及調(diào)q技術(shù)的基本原理,重點(diǎn)研究了利用受激布里淵散射過程進(jìn)行自調(diào)q的摻鉺光纖激光器,進(jìn)行了理論分析和仿真實(shí)驗(yàn)研究,給出了這一過程的物理模型。