matrix n. (pl. matrices 或matrixes) 1.【解剖學(xué)】子宮;母體;發(fā)源地,策源地,搖籃;【生物學(xué)】襯質(zhì)細胞;間質(zhì);基質(zhì);母質(zhì)。 2. 【礦物】母巖;脈石;【冶金】基體;【地質(zhì)學(xué);地理學(xué)】脈石;填質(zhì);雜礦石。 3. 【印刷】字模;型版,紙型;鑄型,陰模。 4.【陣】(矩)陣,方陣;母式;【物理學(xué)】間架;【無線電】矩陣變換電路。 5.【染】原色〔紅黃藍白黑五種〕。 the matrix of a nail 【解剖學(xué)】指甲床。
Inverse problem of generalized eigenvalue for nonnegtive symmetric tridiagonal matrix 非負對稱三對角矩陣的廣義特征值反問題
On the period symmetric tridiagonal matrix inverse problem of generalized eigenvalue 關(guān)于周期對稱三對角矩陣的廣義特征值反問題
The article includes three parts mainly : the first part presents a new divide-and-conquer algorithm for the eigenvalue problem of symmetric tridiagonal matrices 文章主要包括三個部分:第一部分是利用改進的分而治之算法計算對稱的三對角矩陣的特征值
The second part applies divide-and-conquer algorithm to calculate the eigenvalues of symmetrical matrices . the eigenvalues problem of symmetrical matrices ax = x can be transformed the eigenvalues problem of symmetric tridiagonal matrices tx = ux through householder transform . we divide t into t1, t2 and apply symmetrical qr algorithm to compute the eigenvalues of t1, t2 第二部分是利用分而治之算法計算對稱矩陣的特征值,對稱矩陣特征值問題ax=x,通過householder變換,轉(zhuǎn)化為三對角對稱正定矩陣的特征值問題ty=y,再將t分割成兩個子矩陣t_1,t_2,然后利用對稱qr方法分別求t_1,t_2的特征值
And in the second part, we consider the following four inverse eigenproblems : the reconstruction of normal five-diagonal matrix by two or three ordered eigenvalues and corresponding eigenvectors, and the reconstruction of real symmetric tridiagonal matrix and irreducible real symmetric tridiagonal matrix by three eigenvalues and corresponding eigenvectors, some sufficient conditions for existence of unique solution to the problems are given here, and some necessary and sufficient conditions for the existence of both unique solution and solution ( not unique ) to the latter are also given 第二個部分則討論四類矩陣逆特征值問題:在考慮給定的兩個或三個特征值次序的情況下構(gòu)造唯一的規(guī)范五對角線矩陣:由三個給定的特征值和相應(yīng)特征向量來構(gòu)造唯一的實對稱三對角線矩陣和不可約實對稱三對角線矩陣。文章中給出了前者有唯一解的充分條件以及后者有唯一解和有解(不唯一)的充要條件,并且分別給出了其中唯一解的表達方式。
And in the second part, we consider the following four inverse eigenproblems : the reconstruction of normal five-diagonal matrix by two or three ordered eigenvalues and corresponding eigenvectors, and the reconstruction of real symmetric tridiagonal matrix and irreducible real symmetric tridiagonal matrix by three eigenvalues and corresponding eigenvectors, some sufficient conditions for existence of unique solution to the problems are given here, and some necessary and sufficient conditions for the existence of both unique solution and solution ( not unique ) to the latter are also given 第二個部分則討論四類矩陣逆特征值問題:在考慮給定的兩個或三個特征值次序的情況下構(gòu)造唯一的規(guī)范五對角線矩陣:由三個給定的特征值和相應(yīng)特征向量來構(gòu)造唯一的實對稱三對角線矩陣和不可約實對稱三對角線矩陣。文章中給出了前者有唯一解的充分條件以及后者有唯一解和有解(不唯一)的充要條件,并且分別給出了其中唯一解的表達方式。