Surface ship target recognition research based on sga 應(yīng)用基本遺傳算法進(jìn)行水面艦船目標(biāo)識別研究
This paper introduces the basic ga and its development , and provide an arithmetic to the diagnosis equations with ga 首先討論了基本遺傳算法及其改進(jìn)算法,結(jié)合故障診斷方程的特點(diǎn),提出了基于ga算法的故障診斷方程求解方法。
Chaos optimization search operation is introduced to simple genetic algorithm operation for mending the defect that simple genetic algorithm is premature easily 在基本遺傳操作中引入了混沌優(yōu)化搜索操作,克服了基本遺傳算法容易“早熟”的缺陷。
Compared with the computational result of traditional ga , it shows that the searching efficiency of ga can be improved remarkably and the fluctuation of random searching can be reduced by recognizing building block 與基本遺傳算法的計(jì)算結(jié)果對比分析表明,所提算法可顯著提高遺傳算法的搜索效率,減小遺傳算法隨機(jī)搜索的波動性。
In this thesis , following improving of the simple genetic algorithm , the improved genetic algorithm is used to solve the problem of logistics distribution center location , getting the resolution of the location model 本文在改進(jìn)基本遺傳算法基礎(chǔ)上,然后利用該改進(jìn)的遺傳算法對物流配送中心選址問題進(jìn)行優(yōu)化求解,并結(jié)合實(shí)際模型,提出了“混合并行編碼”的編碼思想。
In the fourth chapter , on the basis of definition of the mathematic model of pumping station in dispatching , and considering the task of dispatching , the author choose genetic algorithm to settle the problem 第四章中,首先建立系統(tǒng)的數(shù)學(xué)模型,針對優(yōu)化調(diào)度的任務(wù)要求,選用了遺傳算法。而后,詳細(xì)討論了基本遺傳算法的實(shí)現(xiàn),分析了基本遺傳算法的缺陷并給出改進(jìn)的方法。
The basal genetic algorithm bears only cross - over operator and mutation operator which makes it has the weak point in the search ability , thus the prematurity often occur and the result often converge to the vicinity of the real optimal point 基本遺傳算法僅有交叉算子和變異算子,因而局部搜索能力不強(qiáng),容易出現(xiàn)種群早熟,進(jìn)化結(jié)束時(shí)往往收斂到最優(yōu)點(diǎn)附近而達(dá)不到全局最優(yōu)點(diǎn)。
Because no literature discusses that how to confirm the appropriate population size , this paper discusses how the population size affects ga ' s optimal course based on three examples . this paper confirms the better population size 由于沒有這方面相關(guān)的文獻(xiàn)資料,本文還針對群體規(guī)模對基本遺傳算法的優(yōu)化計(jì)算影響的問題結(jié)合三個(gè)算例進(jìn)行了嘗試性的對比計(jì)算,確定了較佳的群體規(guī)模。
This paper starts with the basic theory of genetic algorithms . then , some modification methods are advanced and some convergence proofs made , aiming at the problem that the probability of simple genetic algorithm ( sga ) converged to optimal solution is less than 1 本文從遺傳算法的基本理論入手,針對基本遺傳算法( sga )不以概率1收斂于最優(yōu)解的問題,提出了一些改進(jìn)方法并對其收斂性進(jìn)行證明。
After the characters , development , application and the foundational theory of genetic algorithm being introduced , the simple genetic algorithm is improved on in this thesis aiming at its application limitation . the improving work is as follows 在對遺傳算法的特點(diǎn)、發(fā)展過程、應(yīng)用領(lǐng)域以及其理論基礎(chǔ)介紹之后,本文針對基本遺傳算法的應(yīng)用存在的局限性,對其進(jìn)行改進(jìn),主要包括以下幾方面的工作。