We evaluate error rate , scalability , time , tree nodes numbers by 12 - cross validation method . experiment has demonstrated that new algorithm greatly reduces the error rate and has good scalability at the same time 實(shí)驗(yàn)中采用12交又驗(yàn)證方法,對算法分類準(zhǔn)確率、伸縮性、時間、樹節(jié)點(diǎn)個數(shù)等幾個指標(biāo)進(jìn)行評估。
A learning algorithm of compressed candidates based on bayesia belief network is developed to solve slow running problem of traditional bayesian belief network constructing algorithm 摘要針對傳統(tǒng)算法分類速度較慢的不足,改進(jìn)傳統(tǒng)算法中候選變量的搜索方式,提出用依賴度量函數(shù)測量變量之間的依賴程度,得出壓縮候選的貝葉斯信念網(wǎng)絡(luò)構(gòu)造算法。
Then we describe the lastest researches and developments on multicast congestion control algorithms and classify them from different aspects . furthermore , different algorithms are analyzed and compared , and some problems are pointed out 然后討論了組播擁塞控制算法分類的標(biāo)準(zhǔn),比較和分析了現(xiàn)有組播擁塞控制算法的優(yōu)缺點(diǎn),指出了其中的不足之處。
There are two different visualization approaches of 3d - data sets , one is surface rendering algorithm , the other is volume rendering algorithm . the latter is the emphasis of the paper . the paper describes its optical modek algorithm classification and discusses its future applications and problems to be solved 體繪制算法是本文的研究重點(diǎn),本文介紹了體繪制算法的光照模型、算法分類和發(fā)展方向,并以光線投射算法為例,詳細(xì)的論述了體繪制算法的原理、流程、關(guān)鍵技術(shù)。
In algorithms , classification algorithms are divided into two cases : one for known statistical distribution model and the other for unknown statistical distribution model . four classification algorithms , the bata - prime statistic model fusing quadratic gamma classifier , based on sar image rcs reconstruction and space position mode , on the mixed double hint layers rbfn ( mdhrbfn ) model and on the self - adapt fuzzy rbfn ( afrbfn ) model , are derived . the problems , including how to further improving the class ratio of the bayes decision , decreasing the dependence on the statistical model and directly providing the adapted algorithm with samples , are solved 提出了基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)( rbfn )的雙隱層混合網(wǎng)絡(luò)( mdhrbfn )模型,解決了標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)在具體sar圖像地物分類中分類類別數(shù)目不夠和分類精度差的問題;提出了基于模糊推理系統(tǒng)的自適應(yīng)模糊rbfn分類( afrbfn )模型,兼顧通用性與精確性,增強(qiáng)人機(jī)交互能力,進(jìn)一步提高了算法分類率。
It can make for existing algorithms to be improved by analysing their advantages and disadvantages , and for users to choose a right algorithm for a specified dataset in order to receive a optimization clustering results . it is also the basis of further classifying popular algorithm and establishment of clustering benchmark . secondly , genetic algorithm ( ga ) - based clustering method is researched 分析了現(xiàn)有算法的優(yōu)缺點(diǎn),以利于進(jìn)一步改進(jìn);通過對現(xiàn)有算法的性能評述,有利于數(shù)據(jù)挖掘用戶能夠針對特定的數(shù)據(jù)集選擇正確的算法,以獲得最優(yōu)化的結(jié)果和性能;也可以為現(xiàn)有算法分類比較的進(jìn)一步研究以及建立聚類基準(zhǔn)奠定基礎(chǔ)。