Upper embeddability of a kind of special graph 一類特殊圖的上可嵌入性
So it is very significant to study the embeddability of algebra systems 從而研究代數(shù)系統(tǒng)的可嵌入性是非常有意義的。
This paper mainly discusses the embeddability of several kinds of important algebra systems 本文的目的正是研究幾類重要的代數(shù)系統(tǒng)的可嵌入性問題。
However , the embeddability plays an important role in proving the completeness of the formal deductive systems . when an algebra system has embeddability . a formula is a tautology for each linearly ordered algebra if and only if it is a tautology for each algebra 在可嵌入性的保證下,當(dāng)一個(gè)公式對(duì)所有的某種線性代數(shù)系統(tǒng)是重言式時(shí),其必定對(duì)所有的同種代數(shù)系統(tǒng)是重言式。
The main content of the present paper is as follow : in the first part , this paper gives the definition of lfi algebras and clfi algebras ; discusses the properties of fi algebras , theirs mp filters . lfi algebras and lfi algebras with embeddability 本文的主要內(nèi)容如下:第一章:討論了fi代數(shù)及其mp濾子的性質(zhì);給出了lfi代數(shù)及clfi代數(shù)的定義;討論了lfi代數(shù)的性質(zhì);在此基礎(chǔ)上,給出了lfi代數(shù)可嵌入于全序fi代數(shù)乘積的充要條件。
The second part discusses the properties of residuated lattices satisfying ; gives a necessary and sufficient condition w . r . t . residuated lattices . by means of it , this paper obtains several kinds of important algebra systems such as r0 algebras , mv algebras , bl algebras , and wnm algebras have embeddability ; discusses the relation between lfi algebras and residuated lattices ; gives a necessary and sufficient condition for clfi algebras becoming residuated lattices 第二章:討論了滿足( * )式的剩余格的一些性質(zhì);找到了剩余格可嵌入于全序剩余格乘積的充要條件;利用這個(gè)結(jié)果,得到了幾類重要代數(shù)系統(tǒng)像r _ 0代數(shù)、 mv代數(shù)、 bl代數(shù)、 wnm代數(shù)、蘊(yùn)涵格等等具有可嵌入性;還討論了lfi代數(shù)與剩余格的關(guān)系,給出了clfi代數(shù)成為剩余格的充要條件。