This paper consists of two chapters : chapter i is about digraph theory and chapter ii is about infinite-dimensional linear system theory 本文分別在第一章與第二章討論有關(guān)有向圖與無(wú)窮維線性系統(tǒng)的具體問(wèn)題。
Total dose effect is simulated for c4007b, cc4007rh and cc4011 devices at different absorbed dose rate by using linear system theory 摘要利用線性響應(yīng)理論模型模擬c4007b、cc4007rh和cc4011器件受不同射線劑量率輻射時(shí)的總劑量效應(yīng)。
The usual design of the magnetic controller always linearizes around the balance point and bases on the linear system theory to design the linear controller 磁懸浮軸承的控制器設(shè)計(jì)通常是在平衡點(diǎn)附近進(jìn)行線性化,按照線性理論設(shè)計(jì)線性控制器。
Based on the chaotic theory and non-linear system theory, a new active flow control technology-the synthetic jet technology, appeared several years ago 基于混沌理論及非線性系統(tǒng)特征的合成射流技術(shù)是國(guó)際上近幾年提出的一種全新的流動(dòng)主動(dòng)控制技術(shù)。
In this paper we deal with two aspects of applied mathematics, one is digraph theory and the other is infinite-dimensional linear system theory 本文將研究?jī)蓚€(gè)方面的內(nèi)容:有向圖理論與無(wú)窮維線性系統(tǒng)。這兩個(gè)方面是應(yīng)用數(shù)學(xué)中的兩個(gè)非常重要的研究領(lǐng)域。
Based on the model, the decoupling design of the system by the method of nonlinear decoupling are presented and a linear model is resulted . then, linear system theory can be used to analysis and design the system 在所建模型的基礎(chǔ)上,本文用非線性解耦方法對(duì)其進(jìn)行了解耦設(shè)計(jì),得到一個(gè)線性模型,這樣就可以用線性系統(tǒng)理論對(duì)其進(jìn)行分析和設(shè)計(jì)。
Now the subject of modeling and identifying various nonlinear systems has attracted many researchers . however, it is difficult for the classical identification methods based on the linear system or intrinsically linear system theory to provide satisfactory results 當(dāng)前,對(duì)各種非線性系統(tǒng)的建模、辨識(shí)己引起人們的廣泛注意,但是,使用建立在線性或本質(zhì)線性系統(tǒng)基礎(chǔ)上的傳統(tǒng)辨識(shí)方法難以獲得理想結(jié)果。
When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory 研究結(jié)果表明,輻射響應(yīng)與吸收劑量成線性關(guān)系時(shí),在實(shí)驗(yàn)室選用任一特定劑量率進(jìn)行總劑量輻射和輻照后室溫退火,可以通過(guò)線性響應(yīng)理論模擬其它劑量率輻射下的總劑量效應(yīng)。
Furthermore, the well-known separation principle for designs of controllers and observers in linear system theory are proved to be hold for fuzzy large-scale systems considered in this dissertation, which is important for analysis and design problems of controllers and observers of interconnected fuzzy large-scale systems 并證明了對(duì)于關(guān)聯(lián)模糊大系統(tǒng)而言,線性系統(tǒng)中著名的控制器及觀測(cè)器設(shè)計(jì)的分離原理也是成立的,這對(duì)于非線性關(guān)聯(lián)模糊大系統(tǒng)控制器與觀測(cè)器的分析與設(shè)計(jì)問(wèn)題具有重要的意義。
This paper establishes the mathematic model according to the second law of newton and the foundation of the dynamics and analyses respective the force of cart and pendulum adopted the concept of " the equivalent cart " to linearization . the paper specialize the control ability of pendulum system using linear system theory and perform the control of the inverted pendulum applying state feedback theory through pole collocate 本文首先利用牛頓第二定律及相關(guān)的動(dòng)力學(xué)原理建立二級(jí)倒立擺的數(shù)學(xué)模型,對(duì)小車和擺分別進(jìn)行受力分析,并采用等效小車的概念進(jìn)行線性化處理,并運(yùn)用線性系統(tǒng)理論分析了這個(gè)系統(tǒng)的能控性,提出了應(yīng)用狀態(tài)反饋理論,通過(guò)極點(diǎn)配置實(shí)現(xiàn)對(duì)倒立擺的控制。