Chapter 4 deals with painleve integrability and backlund transformation 第四章討論了非線性微分方程的painleve可積性和backlund變換。
And some exact explicit solutions of burgers equation and sine - gordon equation are obtained through separately constructing their backlund transformations 本文應(yīng)用這個(gè)變換方法分別建立burgers方程和sine - gordon方程的bcklund變換關(guān)系,并且得到了一些有意義的精確解析解。
Upon now , there are several available methods in solving the nlepdes , for example , the inverse scattering transform , the hirota method , the backlund transformation method and the homogeneous method 至今比較成功的系統(tǒng)求解方法有散射反演法, hirota方法, bcklund變換法和齊次平衡法。
Chapter3 : the method of backlund transformation is introduced . its aim is to build the connection between the solutions of two different equation , or the connection between the solutions of one same equation 第三章介紹bcklund變換法,它是建立不同方程解之間聯(lián)系,或同一方程不同解之間聯(lián)系的一種變換方法。
The symplectic uniton and symplectic extended uniton are introduced . the method of the symplectic backlund transformation and the darboux transformation is used to construct new symplectic uniton from a known one 引進(jìn)了辛uniton的概念,通過b icklund變換和darboux變換,給出了由已知辛uniton構(gòu)造新的辛uniton的純代數(shù)方法。