backlund造句
例句與造句
- Chapter 4 deals with painleve integrability and backlund transformation
第四章討論了非線性微分方程的painleve可積性和backlund變換。 - And some exact explicit solutions of burgers equation and sine - gordon equation are obtained through separately constructing their backlund transformations
本文應用這個變換方法分別建立burgers方程和sine - gordon方程的bcklund變換關(guān)系,并且得到了一些有意義的精確解析解。 - Upon now , there are several available methods in solving the nlepdes , for example , the inverse scattering transform , the hirota method , the backlund transformation method and the homogeneous method
至今比較成功的系統(tǒng)求解方法有散射反演法, hirota方法, bcklund變換法和齊次平衡法。 - Chapter3 : the method of backlund transformation is introduced . its aim is to build the connection between the solutions of two different equation , or the connection between the solutions of one same equation
第三章介紹bcklund變換法,它是建立不同方程解之間聯(lián)系,或同一方程不同解之間聯(lián)系的一種變換方法。 - The symplectic uniton and symplectic extended uniton are introduced . the method of the symplectic backlund transformation and the darboux transformation is used to construct new symplectic uniton from a known one
引進了辛uniton的概念,通過b icklund變換和darboux變換,給出了由已知辛uniton構(gòu)造新的辛uniton的純代數(shù)方法。 - It's difficult to find backlund in a sentence. 用backlund造句挺難的
- Two types of ( 2 + l ) - dimensional generalized burgers equations are shown to pass the painleve test by using wtc method , and their backlund transformations are obtained through painleve truncating expansion . cole - hopf transformation is their special case
利用wtc方法證明了兩類( 2 + 1 ) -維廣義burgers方程是painleve可積的,并經(jīng)截斷展開原理獲得了它們的backlund變換,其中cole - hopf變換是其特例。 - In this paper , i consider the traveling wave solutions and peakons of the generalized camassa - holm ( gch ) equation and give the express of the solitons of this equation . the peakons and their figures of the gch equation are given with the mathematic software for m - 1 , m = 2 and m = 3 in particular ; for m = 3 , i get the generalized dissipative camassa - holm equations by adding a dissipative term and find two types exact traveling wave solutions of this equations . i also apply the homogeneous balance method into the gch equation so that i get a group of smooth solutions for m = 2 and m = 3 and the backlund transformation for m - 3 of the gch equation
本文研究廣義camassa - holm ( gch )方程的行波孤立子解及尖峰孤立子解,給出gch方程的行波孤立子解的表達式,特別的,對m = 1 、 m = 2 、 m = 3時利用mathematica數(shù)學軟件進行計算,解出了gch方程的尖峰孤立子解,并給出了此時gch方程的尖峰孤立子解的圖形,使數(shù)值分析和理論相結(jié)合;對m = 3時的gch方程增加一耗散項u _ ( xx )后得到廣義耗散camassa - holm方程,并解出此方程的兩類精確行波解;本文將齊次平衡法應用到gch方程中,解出m = 2 、 m = 3時的gch方程的一組光滑解,同時應用此方法得到了m = 3時的gch方程的backlund變換。 - In this dissertation , with the aid of many types of constructive transformations and symbolic computation , some topics in nonlinear waves and integrable system are studied , including exact solutions , painleve integrability , backlund transformation , darboux transformation , symmetry ( similarity reduction ) , conditional symmetry , lax integrable hierarchy , liouville integrable n - hamilton structure , constraint flow , involutive system , lax representation , r - matrix , separation of variables and integrable couplings . chapter 2 and 3 are devoted to investigating exact solutions of nonlinear wave equations : firstly , the basic theories of c - d pair and c - d integrable system are presented
本文以構(gòu)造性的變換及符號計算為工具,來研究非線性波和可積系統(tǒng)中的一些問題:精確解(如孤子解、周期解、有理解、 dromion解及compacton解等) 、 panileve可積性、 backlund變換、 darboux變換、對稱(相似約化) 、條件對稱、 lax可積族、 liouville可積的n - hamilton結(jié)構(gòu)、約束流、對合系統(tǒng)、 lax表示、 r -矩陣、變量分離及可積的耦合系統(tǒng) - This paper is to study harmonic maps into symplectic groups and local isometric immersions into space forms by means of the soliton theory . by realizing an action of the rational loop group on the spaces of corrsponding solutions , we get the backlund transformation and the darboux transformation , and thereby we give the explicit construction for harmonic maps into symplectic groups and local isometric immersions into space forms via purely algebraic algorithm
主要用孤立子理論研究到辛群的調(diào)和映射和到空間形式的局部等距浸入,通過有理loop群在其解空間上的dressing作用,給出b icklund變換和darboux變換的顯式表示,從而獲得到辛群及其對稱空間的調(diào)和映射和到空間形式的局部等距浸入的純代數(shù)構(gòu)造方法。 - The second part , with the aid of many types constructive transformation and symbolic computation ( especially wu algebraic elemination method ) , some topics in nonlinear evolution equation are studied , including exact solution ( solitary solution , periodic solution , rational function solutions and jacobian function solution ) , backlund transformation , cole - hopf transformation , dromion solution and its construction etc . charter 2 introduces ac = bd model and its application about partial differential equations
第二部分以構(gòu)造性的變換及符號計算特別是(吳代數(shù)消元法)為工具,來研究非線性演化方程中的一些問題:精確解(如孤子解、周期解、有理解和雅可比橢圓函數(shù)解(雙周期解)等) 、 backlund變換、 hopf變換, dromion解及衰變結(jié)構(gòu)等第二章介紹了求解pdes的ac = bd模式及其在偏微分方程中的作用。 - As far as the discussion about the structures is concerned , to some extent , it may be said to be an application to the backlund transformation : fix a solution qn to the system ( l . 3 ) , construct a group of solutions qn different from qn through the backlund transformation , and then prove that qn is convergent to qn . in the section 4 , it is vital for us to find out the fixed solution n to the equation ( 3 . 1 ) in the theorem3 . 2 , which is completed in the lemma4 . 2 and theorem4 . 3
第四節(jié)對方程( 1 . 3 )的解的性態(tài)的討論,在一定程度上也可說是對定理3 . 2的一個應用:給定方程的一個解q _ n ,然后通過貝克朗變換構(gòu)造了一系列不同于q _ n的解q _ n ,之后證明了q _ n收斂于q _ n 。 - In this paper , we give the backlund transformations and discuss its structures to some extent for the integrable discretization of the nls1 " equation : the transformation gives a way to construct solutions to the system ( 1 . 3 ) , and it also does to the equation ( 3 . 1 ) , which contribute to reconstruct solutions to the system ( 1 . 3 )
貝克朗變換給出了一種構(gòu)造方程( 1 . 3 )解的方法,同時也給出了構(gòu)造其拉克斯對方程( 3 . 1 )解的方法,這就給我們對方程( 1 . 3 )的解進行重復構(gòu)造創(chuàng)造了條件。