The astringency , error and stability of the numerical method are researched . zero matrix method , constant matrix method , and jacobian matrix method are constructed in order to improve numerical precision and efficiency . the steps for calculating matrix exponential function using pade approach method are given out 研究了所提西安理工大學博士學位論文數(shù)值計算方法的誤差、穩(wěn)定性、收斂性等數(shù)學性質(zhì),在計算精度和計算效率兩方面提出了一些改進措施,構(gòu)造了零矩陣法、常數(shù)矩陣法、雅可比矩陣法等計算格式,給出了利川pade逼近計算矩陣指數(shù)函數(shù)的求解步驟。