Different alleles may be acquired within the inverted segment after the inversion poly morphism is established . 在倒位多形性形成后,在倒位的區(qū)段內(nèi)可能獲得不同的等位基因。
On uniqueness of the solution of a morphism equation 態(tài)射方程解的惟一性
Existence of morphism on the 的映上的映射的存在性
The aim of this paper is to study the generalized inverse of matrices on rings , the generalized inverse of morphism and partial ordering of matrices 本文研究了環(huán)上矩陣的廣義逆,范疇中態(tài)射的廣義逆,并研究矩陣的偏序。
It also discusses some properties of homology regular morphism , and its close relationships to homology monomorphism ( epimorphism ) and homology equivalence 給出了同調(diào)正則態(tài)射的一些性質(zhì),以及它與同調(diào)單(滿)態(tài)和同調(diào)等價(jià)之間的關(guān)系。
We defined the generalized moore - penrose inve rse of morphism , prove it ' s unique when it is existed , and give some its expression in some cases 定義了態(tài)射的加權(quán)廣義逆,證明它的唯一性,在某些情形下給出了存在的充要條件和表達(dá)式。
This paper defines homology monomorphism , homology epimorphism , homology regular morphism in the category of topological spaces with point by using homology functor 摘要利用同調(diào)函子,在點(diǎn)標(biāo)拓?fù)淇臻g范疇中定義了同調(diào)單態(tài)、同調(diào)滿態(tài)、同調(diào)正則態(tài)射等概念。
A sequence ( epic , monic ) factorization of morphism is " defined , with the help of the sequence ( epic , monic ) factorization of morphism , some necessary and sufficient conditions for the drazin inverse are obtained 首次定義了態(tài)射的滿單分解序列,利用其給出了態(tài)射的drazin逆存在的充要條件及其表達(dá)式。
We research the generalized inverse of morphisms in preadditive category , give the characterization for the moore - penrose and drazin inverse , and obtain the necessary and sufficient conditions for the existence of core - nipotent for morphism 我們考察了預(yù)加法范疇中態(tài)射的廣義逆,利用冪等態(tài)射給出了態(tài)射廣義逆存在的充要條件及其表達(dá)式。
Part 2 ( chapter3 ) the moore - penrose inverse and drazin inverse of morphisms with universal - factorzation in category are studied , its existences are characterized , and the expression of the generalized inverse of morphism are establish ( 2 )研究范疇中具有泛分解態(tài)射的moore - penrose逆和drazin逆,給出了moore - penrose逆和drazin逆存在的充要條件及其表達(dá)式。
In mathematics, a morphism is an abstraction derived from structure-preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics.