saddle n. 1.馬鞍;(腳踏車(自行車)等的)鞍。 2.(羊等的)帶肋[脊]骨的肉。 3.鞍形架,鞍狀物。 4.【地質(zhì)學(xué);地理學(xué)】鞍部;馬鞍形山;鞍狀構(gòu)造。 5.【物理學(xué)】諧振曲線的凹谷。 6.【造船】圓枕木;【機(jī)械工程】凹座,軸鞍,鞍座板;滑動(dòng)座架;滑板;鍋爐座。 7.【電學(xué)】電線桿的托架;【建筑】浮橋的托梁;(門口的)踏板。 an axle saddle 【機(jī)械工程】軸鞍。 a cylinder saddle 鞍形汽缸座。 the Gr. S- (長(zhǎng)江口外的)馬鞍山群島。 be at home in the saddle 善于騎馬。 be cast out of the saddle 免職。 for the saddle (馬)騎用的。 get into the saddle 騎上馬;就職。 in the saddle 騎著馬;在職;統(tǒng)轄著,控制著,掌著權(quán)。 lost the saddle 從馬上摔下來(lái)。 put the saddle on the right [wrong] horse 1. 責(zé)備應(yīng)該[不該]責(zé)備的人。 2. 夸獎(jiǎng)應(yīng)該[不該]夸獎(jiǎng)的人。 vt. 1.加鞍,上鞍。 2.給背上,使負(fù)擔(dān)(責(zé)任等)。 saddle sb. with a task 使某人擔(dān)負(fù)某一任務(wù)。 adj. -less
Primary resonance saddle - node bifurcation control of forced duffing system 振動(dòng)系統(tǒng)的主共振鞍結(jié)分岔控制
The ttc is calculated using a method based on continuation power flow ( cpf ) , and the method is the most availability and reliability of coping with saddle - node bifurcation point in the curve result , which is validated with simulation on some calculation examples 經(jīng)過(guò)算例的分析,連續(xù)潮流的計(jì)算方法在求解考慮鞍型分叉的電壓穩(wěn)定性約束下的輸電能力最為可靠,該方法有效且實(shí)用。
The bifurcation analysis of the model depending on all parameter indication that it exhibits numerous kinds of bifurcation phenomena , including the saddle - node bifurcation , the supercritical and subcritical hopf bifurcation , and the lioinoclinic bifurcation . in the generic case , the model has the bifurcation of cusp type ol ' codimension 2 ( i . e . . bogdanov - taken bifurcation ) but for some specific parameter values it has a multiple focus of multiplicity at least 2 . and , we give the global analysis 本文考慮具非單調(diào)功能反應(yīng)函數(shù)的捕食者?食餌系統(tǒng),討論了系統(tǒng)的bogdanov - taken分支,給出了不同種類的分支現(xiàn)象,包括鞍-結(jié)點(diǎn)分支,上臨界與下臨界hopf分支,和同宿軌分支,并討論了無(wú)窮遠(yuǎn)點(diǎn)的定性分析,給出了全局結(jié)構(gòu)。
Afterwards , a duffing system with delayed displacement feedback is studied by the method of multiple scales and other numerical methods . the uniform formulas for computing the critical values of time delay are given and the global diagrams of bifurcation for the periodic solutions with respect to the time delay are obtained under different parametric combinations . it is shown that the hopf bifurcation and the saddle - node bifurcation are the only two types of bifurcation observed in such a system 接下來(lái)用多尺度法及數(shù)值方法研究了一具有時(shí)滯位移反饋的duffing系統(tǒng)的動(dòng)力學(xué),得到了不同參數(shù)下系統(tǒng)平衡點(diǎn)發(fā)生穩(wěn)定性切換時(shí)的臨界時(shí)滯計(jì)算公式及關(guān)于時(shí)滯的大范圍hopf分叉圖,并發(fā)現(xiàn)saddle - node分叉及hopf分叉是系統(tǒng)出現(xiàn)周期運(yùn)動(dòng)的兩個(gè)主要的來(lái)源。
In the second part , we try to apply orthogonal polynomial approximations to the dynamical response problem of the duffing equation with random parameters under harmonic excitations . we first reduce the random duffing system into its non - linear deterministic equivalent one . then , using numerical method , we study the elementary non - linear phenomena in the system , such as saddle - node bifurcation , symmetry break bifurcation , phenomena in the system , such as saddle - node bifurcation , symmetry break bifurcation , period - doubling bifurcation and chaos 本文第二部分嘗試將正交多項(xiàng)式逼近方法應(yīng)用于隨機(jī)duffing系統(tǒng),提出與之等價(jià)的確定性非線性系統(tǒng)的新概念,并用數(shù)值方法對(duì)該系統(tǒng)在諧和激勵(lì)下的鞍結(jié)分叉、對(duì)稱破裂分叉、倍周期分叉、和混沌等各種基本非線性響應(yīng)進(jìn)行了初步探討。
We show the global dynamics of system ( 1 ) for different parameters . this article consists of two sections , in the first section , we study the global dynamics of system ( l ) when b > . depending on the global qualitative analysis of parameters , we show that the system exhibits " paradox enrichment " for some parameters , a global stable attractor ( ie , positive equilibrium ) for some parameters and a unique stable limit cycle for some other parameters . the bifurcation analysis of system ( 1 ) indicates that it exhibits numerous kinds of bifurcation phenomena including the saddle - node bifurcation . hopf bifurcation , and the homoclinic bifurcation 全文共分成二部分。在第一部分中,我們討論系統(tǒng)( 1 )在b - 2a ~ ( 1 / 2 )時(shí)的全局動(dòng)力學(xué)行為,對(duì)參數(shù)的全局定性分析表明在某些參數(shù)域中系統(tǒng)( 1 )展示“富食悖論”現(xiàn)象,在某些參數(shù)域中系統(tǒng)( 1 )具有全局穩(wěn)定的吸引子(即正平衡點(diǎn)) ,在某些參數(shù)域中系統(tǒng)( 1 )有穩(wěn)定的唯一極限環(huán)。
百科解釋
In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems.