The time-dependent schroedinger equation is rather formidable looking . 含時間的薛定諤方程似乎是令人生畏的。
The schroedinger equation for the one-electron atom is exactly soluble . 單電子原子的薛定諤方程是可精確求解的。
Although we are now equipped to solve the schroedinger equation for the hydrogen atom, we will first solve a simpler problem . 雖然我們現(xiàn)在準備著解氫原子的薛定諤方程,我們將首先解一個較簡單的問題。
In this section we will increase our quantum-mechanical repertoire by solving the schroedinger equation for the one-dimensional harmonic oscillator . 本節(jié)我們將用求解一維諧振子的薛定諤方程以提高我們的量子力學技能。
Thus , if you want your own schroedinger box , just use the 因此,如果希望擁有自己的schroedinger盒,那么只需使用
Schroedinger ' s equation in three dimensions : central potentials , and introduction to hydrogenic systems 三維薛丁格方程式:中心位勢以及介紹類氫系統(tǒng)。
Solutions to schroedinger ' s equation in one dimension : transmission and reflection at a barrier , barrier penetration , potential wells , the simple harmonic oscillator 維薛丁格方程式的解:位壘的穿透及反射,位壘滲透,位能井,簡諧振子。
Introduction to wave mechanics : schroedinger ' s equation , wave functions , wave packets , probability amplitudes , stationary states , the heisenberg uncertainty principle , and zero - point energies 介紹波動力學:薛丁格方程式,波方程式,波包,或然率,穩(wěn)定態(tài),海森堡不確定原理以及零點能量。
Starting from the higher order nonlinear schroedinger ( hnls ) equation , we investigate the propagation characteristics of ultrashort optical pulses in optical fibers from the analytic point of view 本文主要由描述超短光脈沖在光纖中傳輸?shù)母唠A非線性薛定諤方程出發(fā),從解析的角度對其傳輸特性進行了系統(tǒng)的研究。
The main results are as follows : 1 ) by using akns formalism we construct the lax pair for hirota equation , a higher order nonlinear schroedinger ( hnls ) equation . and based on the lax pair , we present exact n - soliton solution by employing simple , straightforward darboux transformation 其主要結果如下: 1 )通過運用akns技巧構造了高階非線性薛定諤( hnls )方程在hirota可積條件下的拉克斯( lax )對,在此基礎上,運用達布變換( darboux )給出該方程的n -孤子解。