A new method for solving linear equations 齊次線性方程組的一種簡(jiǎn)捷的公式化解法
Solving linear equations by elementary column transformations 用列初等變換求解線性方程組
In the elimination method of solving linear equations , pivot in an elimination step is a element with maximum - mod 在解線性方程組的消元法中,主元素指在某步消元時(shí)模最大的那個(gè)元素。
By using rac ( radial alignment constraint ) of imaging process to decompose camera parameters and organizing the solving sequence of the parameters rationally , all parameters can be obtained through solving linear equations that avoid non - linear optimization 巧妙地利用成像過程中的徑向約束( rac )分解攝像機(jī)參數(shù),使得求解線性方程組即可得到全部的攝像機(jī)參數(shù),避免非線性優(yōu)化搜索。
Solving linear equations arise in a surprising number in the computing problems of engineering , but sometimes they are unsolvable . in this paper fast algorithms are presented which compute the minimal norm least square solutions for linear equations with special rectangular matrices coefficients , such as vandermonde matrices , toeplitz matrices , loewner matrices etc . and then , this paper presents an algorithm of computing the left inverse or right inverse for these special rectangle matrices 工程中的計(jì)算問題大部分都可轉(zhuǎn)化成求解線性方程組的問題,而這些線性方程組有的時(shí)候是不相容的,本文研究以一些特殊的長方矩陣為系數(shù)陣的不相容方程組? ? vandermonde方程組, toeplitz方程組, loewner方程組等的極小范數(shù)最小二乘解的快速算法,以及求這些特殊矩陣的左逆及右逆的快速算法。