Frame - oriented method on trajectory simulation 面向框架的彈道仿真方法
Missile trajectory simulation based on increment proportional guide 增量比例導(dǎo)引彈道仿真研究
Research on the whole flying trajectory simulation system of command guided antiaircraft missile 指令制導(dǎo)防空導(dǎo)彈全彈道飛行仿真系統(tǒng)研究
As combat simulation frame and as missile trajectory simulation model are setup in the paper 建立了空地作戰(zhàn)任務(wù)仿真框架和空地導(dǎo)彈的彈道計(jì)算模型。
Analyzing to a stand off missile ' s flight characteristics , the as missile trajectory simulation is completed 在分析了典型防區(qū)外導(dǎo)彈飛行特點(diǎn)的基礎(chǔ)上,進(jìn)行空地導(dǎo)彈彈道仿真。
Abstract : the digital simulation methods for maintaining the trajectory on a given manifold are presented . particularly , the norm conserving schemes are given for the solution of the system of the quaternion equations in the trajectory simulation of the vehicle 文摘:給出保持軌道在給定流形上的數(shù)字仿真方法,特別對(duì)飛行器軌道仿真中的四元數(shù)微分方程組的求解給出保范處理。
Then we analyzed the change process of trajectory in air - to - ground missile attack , built the movement equations based on the center of gravity of every segment . in the end we gave the whole trajectory simulation result of air - to - ground attack 分析了空地導(dǎo)彈攻擊的彈道變化過程,將攻擊過程劃分為五部分,分別對(duì)各段建立了重心運(yùn)動(dòng)方程并進(jìn)行了仿真,最后給出了空地導(dǎo)彈攻擊的全過程彈道仿真結(jié)果。
In this paper . the question of compound guidance about mid - long range air - to - air missle to be considered . the main contributions are as follows : first , two midcourse guidance laws are given . that is optimally predictable pn micourse guidance , which is suitable for middle range missle , and singularly perturbed midcourse guidance . which is suitable for long range missle guidance ; then two terminal guidance laws are given . that is variable structure guidance , which is suitable for passive radar guidance . and optimal guidance which is suitable for active radar guidance ; and then the error sourses of hand - off are researched , the hand - off law is given at the time ; fmally , the midcourse guidance laws and terminal guidance laws are tested by simulation , and the whole trajectory simulation are given through hand - off law , and the results are satisfied 主要工作如下:首先研究了用于中遠(yuǎn)程空空導(dǎo)彈復(fù)合制導(dǎo)的兩種中制導(dǎo)律,即用于中程導(dǎo)彈的最優(yōu)預(yù)測(cè)比例導(dǎo)引中制導(dǎo)律和用于遠(yuǎn)程導(dǎo)彈的奇異攝動(dòng)中制導(dǎo)律,它們均有很好的中制導(dǎo)性能,能夠滿足中末制導(dǎo)的交班要求;接著研究了兩種末制導(dǎo)律,即用于被動(dòng)雷達(dá)末制導(dǎo)的變結(jié)構(gòu)制導(dǎo)律和用于主動(dòng)雷達(dá)導(dǎo)引頭的最優(yōu)末制導(dǎo)律,均適用于復(fù)合制導(dǎo)末制導(dǎo)段;然后分析了中末制導(dǎo)的交班誤差源,討論了用于復(fù)合制導(dǎo)的交接律;最后通過仿真,驗(yàn)證了提出的中制導(dǎo)律和末制導(dǎo)律,結(jié)合提出的交接規(guī)律,在不同的情況下對(duì)中末制導(dǎo)段彈道進(jìn)行了仿真驗(yàn)證,結(jié)果證明文中提到的中末制導(dǎo)律能夠達(dá)到性能指標(biāo)要求。