A low - dimensional nonlinear feedback control scheme for a nonlinear partial differential equation ( pde ) system is addressed 摘要一低次元非線性回饋控制方法用于處理一非線性偏微分方程式系統(tǒng)。
Laplace transformation , array , vector , determinate , linear equation set , fourier series , partial differential equations 本課程介紹拉普拉斯轉(zhuǎn)換、矩陣、向量、行列式、線性方程組、傅立葉級數(shù)、偏微分方程式。
A solid undergraduate background in classical physics , electromagnetic theory including maxwell ' s equations , and mathematical familiarity with partial differential equations and complex analysis are prerequisites 古典力學(xué)、包含馬克斯威方程式的電磁學(xué)理論,熟悉數(shù)學(xué)的偏微分方程式以及復(fù)數(shù)分析的堅(jiān)實(shí)背景知識是先決條件。
A presentation of the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic , parabolic and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science , engineering , and other fields 本課程講授求解不同線性及非線性橢圓、拋物線及雙曲線偏微分方程式與積分方程式等之現(xiàn)代數(shù)值技巧基礎(chǔ),并強(qiáng)調(diào)在許多科學(xué)、工程及相關(guān)領(lǐng)域上的應(yīng)用。