Momentum integral equation of turbulent boundary layer on ogree section of spillway dam in considering the gravity and centrifugal force 考慮重力及離心力的溢流壩反弧段紊流邊界層動(dòng)量積分方程
By the integral to boundary layer thickness and relative conditions , the momentum integral equation of boundary layer is obtained 通過對邊界層厚度的積分并利用相關(guān)條件,得到了邊界層動(dòng)量積分方程。
In chapter three , the momentum integral equations and their solutions of two - phase fluids in boundary layer are given and the no - disturbance solutions on the surface of vane are required . leading into the disturbance factor of no - dimension and thickness coefficient ks in boundary layer , the numerical method of finite approximation is used to calculate the boundary layer 第三章給出了固液兩相流泵的邊界層動(dòng)量積分方程及其解的一般表達(dá)式,并得到葉片表面的無擾動(dòng)解;引入了無量綱擾動(dòng)因子及邊界層厚度系數(shù)k _ ,給出了用于邊界層計(jì)算的有限次逼近的計(jì)算方法。
Firstly , based on n - s equation , the momentum differential equation ( contained centrifugal force ) is derived by simplification in boundary layer and then integrates the differential equation over the thickness of the boundary layer , the momentum integral equation is deduced . the dimensionless centrifugal factor is introduced , then the solution of the momentum integral equation is obtained . the dimensionless group is introduced to determined separation of boundary layer 本文首先根據(jù)粘性流體力學(xué)的一般方程,通過在邊界層內(nèi)進(jìn)行量級比較,在所限定的范圍內(nèi)得到了含有離心力的邊界層動(dòng)量微分方程并給出其滿足的邊界條件,然后對該微分方程在邊界層內(nèi)積分得到離心泵葉輪邊界層動(dòng)量積分方程,在求解過程中引入了無量綱離心因子,并作了相應(yīng)合理的假設(shè),得出積分方程解的一般表達(dá)式,并引入以邊界層動(dòng)量損失厚度為主要特征量的無量綱參數(shù)對邊界層分離進(jìn)行評價(jià)。