It covers many new fields , such as computer science , computing mathematics , computing geometry , computer graphics and intelligence 它涉及計(jì)算機(jī)科學(xué)、計(jì)算數(shù)學(xué)、計(jì)算幾何、計(jì)算機(jī)圖形學(xué)和人工智能等新的學(xué)科領(lǐng)域。
First , the geometric properties of the sum of the segments in the complex plane are proved , based on which , the robust problem is interpreted as a special point location problem of computing geometry -穩(wěn)定性問(wèn)題。證明了在復(fù)平面上多個(gè)線(xiàn)段和的幾何性質(zhì)。在此基礎(chǔ)上,將魯棒問(wèn)題轉(zhuǎn)化為計(jì)算幾何中的點(diǎn)定位問(wèn)題。
Relying on the theorem of graham , the sample points are realized the minimal convex hull which computational complexity is o ( nlogn ) . last a new feature extraction - convex - body segmentation and approximation of scattered sample for non - linear classification based on the knowledge of computing geometry and discrete mathematics is presented . new algorithm guarantees that every convex hull is unintersectant . both convex hull between the same classes and convex hull between the different classes are unintersectant 在此基礎(chǔ)上,借助計(jì)算幾何和離散數(shù)學(xué)等相關(guān)知識(shí),為非線(xiàn)性分類(lèi)問(wèn)題中的特征提取提出新的思路-散亂樣本凸體分割與逼近算法,算法保證了兩類(lèi)樣本形成的凸包兩兩互不相交,即同類(lèi)樣本之間、同類(lèi)和異類(lèi)之間形成的凸包互不相交,并且凸包數(shù)量逼近最少,為非線(xiàn)性分類(lèi)提供了新的研究思路。
Visualization in scientific computing ( visc ) is one of the new applications of computer technology . visc is an combination of computer graphics , image manipulation , computer vision , cad , computing geometry , user interface and etc . this dissertation mainly associates ultrasonic ndt with visc technology 科學(xué)計(jì)算可視化技術(shù)是計(jì)算機(jī)圖形學(xué)的一個(gè)新的應(yīng)用領(lǐng)域,是計(jì)算機(jī)圖形學(xué)、圖像信息處理、計(jì)算機(jī)視覺(jué)、計(jì)算機(jī)輔助設(shè)計(jì)、計(jì)算幾何以及用戶(hù)接口等多學(xué)科、多領(lǐng)域的交叉。