Finally , a tensor product space is constructed , in which exists reproducing kernel . the explicit representation of the best interpolation 這為尋找二維插值公式,用以計(jì)算重積分提供一定的方法。
Case study shows that these notations help both the explicit representation of design patterns and attainment of the goals of design patterns 案例分析表明,這些符號有助于清楚地闡明設(shè)計(jì)模式,也有助于實(shí)現(xiàn)設(shè)計(jì)模式目標(biāo)。
The two problems of data mining using neural networks are the long training time and being understood and explicit representation of the acquired knowledge 神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)挖掘的應(yīng)用中主要存在兩個(gè)問題,一是訓(xùn)練時(shí)間過長;二是獲得的知識難以理解和表示。
In this paper we give an explicit representation of the growth optimal portfolio for a discrete - time incomplete financial market and then give the price of an option using the numeraire portfolio approach 在這篇文章中我們給出了離散時(shí)間不完全金融市場中增長最優(yōu)投資組合的顯式表達(dá)式,然后用計(jì)價(jià)單位投資組合法給出了期權(quán)的定價(jià)
The equations of the mean value functions and the covariance functions are established for dynamical systems whose inputs are fuzzy stochastic processes . an existence and uniqueness theorem of ito fuzzy stochastic differential equations is proved , some explicit representations of solutions and the equations of statistical characteristics are deduced for linear fuzzy stochastic differential equations , and numerical methods to nonlinear fuzzy stochastic differential equations are proposed , the conditions for stability and observability of fuzzy linear systems are derived . the kalman filter algorithms of linear fuzzy stochastic systems are brought forward 主要成果包括:提出了模糊隨機(jī)變量協(xié)方差和反向協(xié)方差的概念;研究了二階模糊隨機(jī)變量的均方收斂性,并在此基礎(chǔ)上得到了均方模糊隨機(jī)分析、平穩(wěn)模糊隨機(jī)過程及其譜分解的若干定理;根據(jù)均方模糊隨機(jī)分析理論,得到了輸入為模糊隨機(jī)過程的線性系統(tǒng)的輸出輸入統(tǒng)計(jì)特征關(guān)系方程;證明了ito型模糊隨機(jī)微分方程解的存在唯一性,并給出了ito型線性模糊隨機(jī)微分方程解的表達(dá)式,統(tǒng)計(jì)特征方程以及非線性模糊隨機(jī)微分方程的數(shù)值解法;得到了模糊線性系統(tǒng)的穩(wěn)定性和可觀性條件、線性模糊隨機(jī)系統(tǒng)統(tǒng)計(jì)特征方程和線性模糊隨機(jī)系統(tǒng)的kalman濾波算法;研究了當(dāng)觀測值是模糊數(shù)據(jù)時(shí),線性回歸模型的建立。
Its mathematical model is established , and the properties of existence and uniqueness of the optimal solution are discussed . furthermore , the explicit representation of the optimal solution is given . by matlab language , the program of obtaining the optimal solution is devised 在假設(shè)投資收益率服從正態(tài)分布的條件下,建立了其數(shù)學(xué)模型,討論了最優(yōu)解的存在性與唯一性,得到了最優(yōu)解的解析表達(dá)式,并用matlab語言給出求解程序,最后舉例予以說明并驗(yàn)證了兩個(gè)重要結(jié)論。